

# User manual for the OLC/OLCT100 detector Explosimeter, toxic gas and oxygen detector

(P/N : NPO100GB rev C)





Copyright © 2011 by Industrial Scientific – Oldham S.A.S

First edition, French version

All rights reserved. No reproduction of all or part of this document, in any form, is permitted without the written consent of Industrial Scientific – Oldham S.A.S.

All of the information that is provided in this document is accurate to the best of our knowledge.

As a result of continuous research and development, the specifications of this product may be changed without prior notice.

Industrial Scientific Oldham S.A.S

Rue Orfila

2

Z.I. Est - BP 20417

F-62027 ARRAS Cedex

Tel.: +33 (0)3 21 60 80 80

Fax: +33 (0) 3 21 60 80 00

# Contents

| Chapter 1   Presentation           | 7  |
|------------------------------------|----|
| Purpose                            | 7  |
| Operating principle                | 7  |
| Composition of the detector        |    |
| Internal elements                  |    |
| Identifiers                        | 10 |
| Chapter 2   Ranges                 | 11 |
| OLC100 and OLCT100 ranges          | 11 |
| OLCT100 range (Transmitter type)   | 12 |
| Chapter 3   Installation           | 13 |
| Necessary equipment                |    |
| Regulations and conditions of use  |    |
| Electrical power supply            | 14 |
| Transfer curve                     |    |
| Location of the detector           | 15 |
| Detector positioning               | 15 |
| Connector cable                    |    |
| Cable connection                   |    |
| Scope of use                       | 21 |
| Chapter 4   Calibration            | 22 |
| Necessary equipment                |    |
| Commissioning                      | 22 |
| Stabilization time                 | 23 |
| Opening the cover                  | 23 |
| Calibrating the OLC100             |    |
| Calibrating the OLCT100            | 26 |
| Chapter 5   Preventive maintenance | 31 |
| Frequency of maintenance           |    |
| Actions                            |    |
|                                    |    |

| Checking the cu<br>Possible errors | Maintenance                                          | 34<br>35 |
|------------------------------------|------------------------------------------------------|----------|
|                                    | or block                                             |          |
|                                    | Accessories                                          |          |
| Chapter 8                          | Spare parts                                          | 42       |
| Chapter 9                          | Declaration of EC conformity                         | 44       |
|                                    | Technical specifications                             |          |
|                                    | aracteristics                                        |          |
| General Specifi                    |                                                      | 48       |
|                                    | OLCT100 XP)<br>Is (OLCT100 XP and OLCT100 IS)        |          |
|                                    | heads (OLCT100 XP)                                   |          |
|                                    | DLCT100 XP-IR)                                       |          |
|                                    | Specific instructions for use in explosive           |          |
| -                                  | and operational safety                               |          |
|                                    | ents                                                 |          |
|                                    | rformance for the detection of flammable gases       |          |
|                                    |                                                      |          |
|                                    | ety                                                  |          |
|                                    | nsically safe "ia" protective mode: Special use cond |          |
|                                    |                                                      |          |
| Annexe                             | Ordering information                                 | 59       |
|                                    | -                                                    |          |

Thank you for choosing this OLDHAM instrument.

All of the necessary actions have been taken in order to ensure your complete satisfaction with this equipment.

It is important that you read this entire manual carefully and thoroughly.

#### The extent of our responsibility

- INDUSTRIAL SCIENTIFIC OLDHAM shall not be held responsible for any damage to the equipment or for any physical injury or death resulting in whole or in part from the inappropriate use, installation, or storage of the equipment, which is the result of not complying with the instructions and warnings, and/or with the standards and regulations in force.
- INDUSTRIAL SCIENTIFIC OLDHAM does not support or authorise any business, person, or legal entity in assuming responsibility on behalf of INDUSTRIAL SCIENTIFIC OLDHAM, even though they may be involved in the sale of INDUSTRIAL SCIENTIFIC OLDHAM products.
- INDUSTRIAL SCIENTIFIC OLDHAM shall not be responsible for any damage, direct or indirect, or for damages and interest, direct or indirect, resulting from the sale and use of any of its products UNLESS SUCH PRODUCTS HAVE BEEN DEFINED AND CHOSEN BY INDUSTRIAL SCIENTIFIC OLDHAM FOR THE USE THAT THEY ARE INTENDED.

#### **Ownership clauses**

- → The drawings, specifications, and information herein contain confidential information that is the property of INDUSTRIAL SCIENTIFIC OLDHAM.
- This information shall not, either in whole or in part, by physical, electronic, or any other means whatsoever, be reproduced, copied, divulged, translated, or used as the basis for the manufacture or sale of INDUSTRIAL SCIENTIFIC OLDHAM equipment, or for any other reason without the prior consent of INDUSTRIAL SCIENTIFIC OLDHAM.

## Warning

- This is not a contractual document. In the best interest of its customers and with the aim of improving performance, INDUSTRIAL SCIENTIFIC OLDHAM reserves the right to alter the technical features of its equipment without prior notice.
- READ THESE INSTRUCTIONS CAREFULLY BEFORE THE FIRST USAGE: these instructions should be read by all persons who have or will have responsibility for the use, maintenance, or repair of the instrument.
- This instrument shall only be deemed to be in conformance with the published performance if used, maintained, and repaired in accordance with the instructions of INDUSTRIAL SCIENTIFIC OLDHAM by INDUSTRIAL SCIENTIFIC OLDHAM personnel or by personnel authorised by INDUSTRIAL SCIENTIFIC OLDHAM.

#### Guarantee

Under normal conditions of use and on return to the factory, parts and workmanship are guaranteed for 3 years, excluding such consumables as sensors, filters, etc.

#### **Destruction of the equipment**



**European Union (and EEA) only.** This symbol indicates that, in conformity with directive DEEE (2002/96/CE) and according to local regulations, this product may not be discarded together with household waste.

It must be disposed of in a collection area that is set aside for this purpose, for example at a site that is officially designated for the recycling of electrical and electronic equipment (EEE) or a point of exchange for authorized products in the event of the acquisition of a new product of the same type as before.

# Chapter 1 | Presentation

## **Purpose**

This range of sensors is designed to detect a particular gas depending on the type of sensor used.

# **Operating principle**

The measurement sensor converts the target gas into voltage or current. This electrical parameter is:

- either conducted directly via a connecting cable to a dedicated central measurement unit (as with the OLC100 explosimeter) that operates on the principle of the Wheatstone bridge. Such a measurement unit is available in the OLDHAM range.
- or amplified, corrected for temperature, linearised, and converted to a 4-20 mA signal (as for the OLCT100) and conducted via a connecting cable to a centralized unit (measurement unit or industrial automation system).

# **Composition of the detector**

A detector comprises the following elements:

| ld. | Description                       |
|-----|-----------------------------------|
| 1.  | Company label                     |
| 2.  | Cover                             |
| 3.  | PCB protector (for OLCT version). |
| 4.  | PCB.                              |
| 5.  | Cable gland inlet.                |
| 6.  | Enclosure.                        |
| 7.  | Sensor block.                     |
| 8.  | Nozzle.                           |
| 9.  | Ground connection.                |
| 10. | LEL sensor (high temperature).    |

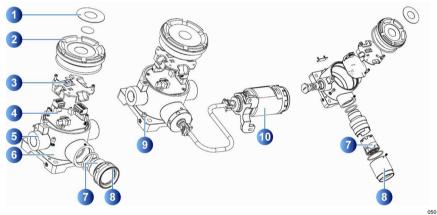



Figure 1 : component parts of an OLCT100 detector.

# **Internal elements**

The following elements are internally accessible to the user:

| ld. | Description                                                                                |
|-----|--------------------------------------------------------------------------------------------|
| 1.  | Terminal for the cable being connected to the central unit (measurement unit, automation). |
| 2.  | Sensor block connector.                                                                    |
| 3.  | Calibration ribbon connector.                                                              |
| 4.  | 4 mA adjustment.                                                                           |
| 5.  | Push button access for 4 mA adjustment.                                                    |
| 6.  | Zeroing.                                                                                   |
| 7.  | Sensitivity adjustment.                                                                    |

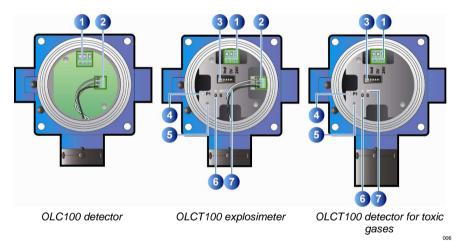



Figure 2 : internal view of the detectors.

# **Identifiers**

The enclosure has two identifier labels, as described below:

#### **Company label**

This in turn groups the detector features together:

| ld. | Description                                                                                                           |
|-----|-----------------------------------------------------------------------------------------------------------------------|
| 1.  | Manufacturer's name                                                                                                   |
| 2.  | Type of product                                                                                                       |
| 3.  | ATEX- IECEx Marking                                                                                                   |
| 4.  | CE symbol and the number of the<br>organisation that provided the OLDHAM<br>production quality certification (INERIS) |
| 5.  | Warning.                                                                                                              |
| 6.  | Type of gas detected and range of measurement                                                                         |
| 7.  | Maximum ATEX certification temperature (excluding metrological performance)                                           |
| 8.  | Recycling symbol                                                                                                      |



010



#### Side label

This label shows the following :

| ld. | Description                                  |            |   |
|-----|----------------------------------------------|------------|---|
| 1.  | Thread diameter and pitch for cable inlet    |            |   |
| 2.  | Detector reference number, less sensor (P/N) | $\bigcirc$ |   |
|     |                                              |            | ( |
| 3.  | Detector serial number (S/N)                 | Figure 4   | 4 |

# Chapter 2 | Ranges

# OLC100 and OLCT100 ranges

The OLC100 range is reserved for the detection of explosive vapor by using a Wheatstone bridge sensor.

The OLCT100 range of detectors is provided with an amplifier producing a 2 or 3 wire 4-20 mA analog output. These are transmitter detectors and, therefore, the letter "T".

|                              | OLC100          |
|------------------------------|-----------------|
| Enclosure                    | Explosion proof |
| Detection of explosive gases | Yes             |
| Detection of toxic gases     | No              |
| Detection of oxygen          | No              |
| Detection of CO <sub>2</sub> | No              |
| Output                       | 3 voltage wires |

Table 1 : OLC100 description.

# **OLCT100 range (Transmitter type)**

|                                    | OLCT100XP                                                   | OLCT100XP-IR    | OLCT100IS                 | OLCT100HT                               |
|------------------------------------|-------------------------------------------------------------|-----------------|---------------------------|-----------------------------------------|
| Features                           | Explosionproof                                              | Explosionproof  | Intrinsically<br>safe (1) | Explosionproof<br>(2)                   |
| Detection of<br>explosive<br>gases | Catalytic<br>sensor (VQ1 or<br>AP 4F) or semi-<br>conductor | Infrared sensor | ×                         | Catalytic sensor<br>high<br>temperature |
| Detection of toxic gases           | Electrochemical<br>sensor<br>Or SC                          | ×               | Electrochemical sensor    | ×                                       |
| Detection of<br>oxygen             | Electrochemical sensor                                      | ×               | Electrochemical sensor    | ×                                       |
| Detection of CO <sub>2</sub>       | ×                                                           | Infrared sensor | ×                         | ×                                       |
| 4-20 mA<br>output                  | 2 wires for EC<br>3 wires for SC<br>3 wires for LEL         | 3 wires         | 2 wires                   | 3 wires                                 |

(1) Mandatory Zener diode in the line

(2) Sensor movable up to 5, 10, or 15 meters using a high temperature cable...

EC : electrochemical sensor..

SC : semi-conductor sensor.

LEL : explosimeter

AP : poison resistant

#### Table 2 : comparison of OLCT100 series detectors

# Chapter 3 | Installation



It is recommended that the guides relating to the installation, use, and maintenance of flammable gas and oxygen detectors (standard EN/IEC 60079-29-2) and toxic gas detectors (standard EN 45544-4) should be clearly understood.

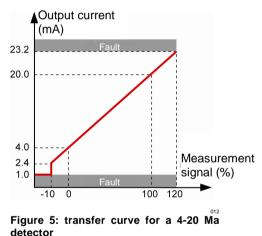
Installation shall be in accordance with the standards in force, classification of the zone, and in conformity with standards EN/IEC 60079-14 and EN/IEC 61241-14, the editions in force, or with other national and/or local standards.

## **Necessary equipment**

- Solution Complete detector assembly
- >> Requisite connector cable
- Multimeter (intrinsically safe, if necessary)
- Tools
- ✤ Fixing hardware

## **Regulations and conditions of use**

- The installation should meet all the regulations currently in force for installations in explosive atmospheres, in particular the standards IEC/EN 60079-14 and IEC/EN 60079-17 (whichever editions are in force) or in accordance with other national standards.
- Senerally speaking, the ambient temperature, supply voltage, and power that are mentioned in this document relate to explosion safety. **This has nothing to do with the operating temperatures of the detector.**
- In a subsection between the section of the sect
- The detector sensor in the transmitter should always be in contact with the ambient air. Therefore:
  - Do not cover the detector.
  - Do not paint the detector.
  - Avoid dust.


# **Electrical power supply**

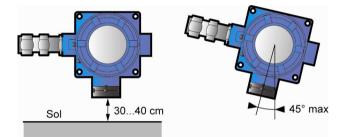
| Type of detector | Supply (V DC)             | Maximum<br>current (mA) | Power consumed<br>(mW) |
|------------------|---------------------------|-------------------------|------------------------|
| OLCT100 XP HT    | 15,5 to 32                | 110                     | 1705                   |
| OLCT100 XP LEL   | 15,5 to 3,2               | 100                     | 1550                   |
| OLCT100 XP IR    | 15,5 to 32                | 60                      | 930                    |
| OLCT100 XP EC    | 10 to 32                  | 23,5                    | 235                    |
| OLCT100 XP SC    | 15,5 to 32                | 100                     | 1550                   |
| OLC100           | By Oldham<br>central unit | 340                     | (1)                    |

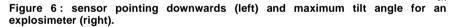
(1) Depends on the central measurement unit.

# **Transfer curve**

The curve shown gives the transmitter output current as a function of the gas concentration. If the user connects the transmitter to a unit other than one that is provided by ISC Oldham, they should be certain that the transfer curve is fully compatible with the input characteristics of their equipment to ensure the proper interpretation of the information provided by the transmitter. Similarly, the unit should provide sufficient voltage to compensate for any voltage drop in the cable.




# Location of the detector


Depending on the density of the gas to be detected or the application, the detector shall be positioned at the ground level, or on the ceiling at the same height as the airflow, or near to the air extraction ducts. Heavy gases may be detected at the ground level, while light gases will be found at ceiling height. Gas densities are provided on page 30.

## **Detector positioning**

The detector shall be installed with the detector sensor pointing downwards.

For explosive gas detectors only, any tilt of more than 45° from the vertical will lead to an inaccurate measurement.





Fixture of the enclosure shall be secured with 4 x M6 screws and the appropriate plugs for the supporting material

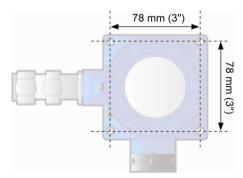



Figure 7 : fixing template for the enclosure.

016

A special holder is available for mounting the detector on the ceiling (see section on accessories. In the OLCT100 HT version, only the OLC20 HT removable detector head can be used at temperatures from  $-20^{\circ}$ C to  $+200^{\circ}$ C.

Only the OLCT100 HT enclosure can be used in ambient temperatures from - 40 °C to + 70 °C.

The high temperature cable between the OLCT100 HT enclosure and the OLC20 HT head is integral with the instrument and is not user-replaceable.

The cable should be protected mechanically

## **Connector cable**

The detector shall be connected to the central unit (measurement and automation unit) by a shielded instrumentation cable, armored if necessary. The choice of cable will be dictated by the particular requirements of the installation, distance, and type of detector (see table below).

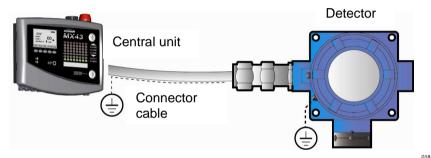



Figure 8: the cable connecting the detector to the central unit should be chosen with care.

~ ~ ~

| Type of detector               | Type of sensor                | cable of o | Maximum length (km) for<br>cable of cross-section as<br>indicated |        |     |
|--------------------------------|-------------------------------|------------|-------------------------------------------------------------------|--------|-----|
|                                | _                             | 0,5mm²     | 0,9mm²                                                            | 1,5mm² |     |
| Upstream line voltage<br>(Vcc) |                               | 24         | 24                                                                | 24     |     |
| OLCT100 XP                     | Catalytic or<br>semiconductor | 0,8        | 1,4                                                               | 2,4    | 250 |
| OLCT100 XP (1)                 | Electrochemical               | <4         | <4                                                                | <4     |     |
| OLCT100 XP-IR                  | Infra-red                     | 1,4        | 2,6                                                               | 4,4    | 250 |
| OLCT100 IS (2)                 | Electrochemical               | 1,8        | 3,3                                                               | <4     |     |
| OLCT100 HT                     | Catalytic, high temperature   | 0,8        | 1,4                                                               | 2,4    | 250 |

(1) for resistance calculations, the assumed load is 120  $\varOmega$  for 4-20 Ma.

16 OLC(T)100

Technical manual

(2) for resistance calculations, the assumed load is 120  $\Omega$  for 4-20 Ma, and a 300  $\Omega$  Zener blocking diode.

Warning: all wiring should meet the installation standards and should be described in a system document for SI installations

The cable <u>must</u> have a braided screen to reduce the influence of electrical and radio-frequency interference. A cable such as AFNOR M 87-202 01-IT-09-EG-FA (Nexans) may be used. It shall be selected according to the type of detector and in accordance with the table shown hereinabove. Below are further examples of suitable cables:

Non ATEX zone: CNOMO FRN05 VC4V5-F

ATEX zone: GEUELYON (U 1000RHC1)

ATEX zone: GVCSTV RH (U 1000)

ATEX zone: xx-xx-09/15- EG-SF or EG-FA or EG-PF (U 300 compatible with M87202)

The maximum permissible length will depend on the cross-section of the cable conductors (see table) and on the minimum supply voltage.

# **Cable connection**

#### Switch off line power supply

On the central unit:

- 1. Inhibit any installation alarms to avoid unexpected triggering during operation.
- 2. In accordance with the manufacturer's instructions, switch off the power to the module in order to be connected to the detector.

#### Cable preparation

The cable shall be taken from the central unit (measurement and automation) to the point of measurement (see Figure 8). The passage, support, and protection of the cable shall be according to best practice

#### Cable passage



It is essential that the instructions provided by the manufacturer of the compression gland are followed and the braided screen is correctly connected.

#### Armored cable

#### Unarmored cable



Note : If the instructions so indicate, the cable may be anchored either inside the housing, or outside of it, and next to the cable gland

#### Figure 9 : example of connection of armored and unarmored cable.

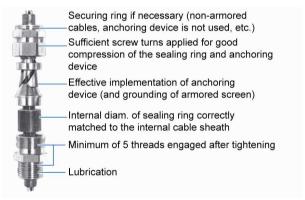



Figure 10 : implementation of a cable entry type of "simple compression.

#### **Cable connection**

The connection of the cable between the detector and central unit should be made with the power off. The site should be at equal potential

Connect the cable to the detector side before connecting the central unit side.

After the wiring has been completed, connect the cable screen to the ground terminal of the central unit.

052

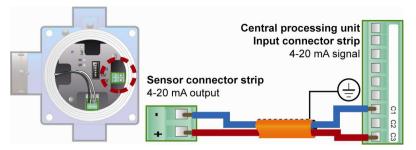



Figure 11 : connections for a 2-wire 4-20 Ma detector.

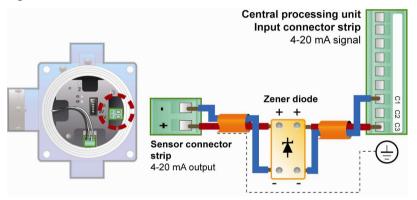



Figure 12 : connections for an intrinsically safe, 2-wire 4-20 Ma detector with a Zener diode.  $\ensuremath{^{\circ\!\!\!^{024}}}$ 

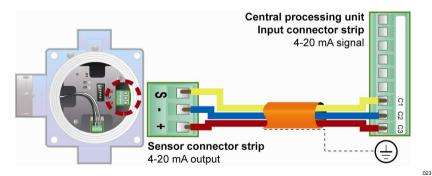



Figure 13 : connections for a 3-wire 4-20 Ma detector.

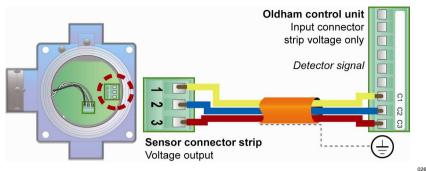



Figure 14 : connections for a 3-wire OLC100 type detector

#### Connecting the enclosure to ground

Connect the enclosure ground terminal to earth according to the regulations. This ground connection may, however, be taken from the terminal on the screw fixing the PCB to the inside of the housing.

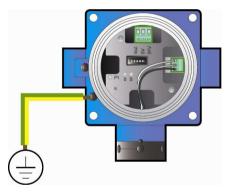



Figure 15 : Ground connection terminal.

028

#### **Closing the cover**

Before connecting the cable to the terminal on the central unit, it is essential that the cover is completely closed.

# Scope of use

The gas detector sensors have certain limitations; it is essential to fully  $\Box$  ecognize these limitations (see chapter 10).

#### Presence of specific components

- Vapour from silicone or sulphur-containing components can affect the catalytic gas detector sensors and thereby distort the measurements. If the sensors have been exposed to these types of compounds, an inspection or calibration will become necessary.
- High concentrations of organic solvents (e.g. alcohols, aromatic solvents, etc.) or exposure to quantities of gas greater than the specified range of measurement can damage the electrochemical sensors. Inspection or calibration is then recommended.
- In the presence of high concentrations of carbon dioxide (CO<sub>2</sub> > 1% vol.), the oxygen-measuring electrochemical sensors can slightly overestimate the concentration of oxygen (0.1 to 0.5% O<sub>2</sub> overestimate).

#### **Operation under low oxygen levels**

- If an electrochemical detector sensor is used in an atmosphere comprising less than 1% oxygen for over one hour, the measurement may be an underestimate.
- If a semiconductor detector sensor is used in an atmosphere comprising less than 10% oxygen, the measurement may be an underestimate.
- If a semiconductor detector sensor is used in an atmosphere comprising less than 18% oxygen, the measurement may be an underestimate.

# Chapter 4 | Calibration



The tasks described in this chapter are reserved for authorised trained personnel only, since these tasks are liable to affect detection reliability

This procedure describes:

- 4 mA calibration for 4-20 mA detectors;
- zero adjustment;
- Sensitivity adjustment.

# **Necessary equipment**

- Multimeter (ranges 0-30 mA and 0-2 V), intrinsically safe if necessary.
- ୬ Bottle of pure air.
- Bottle of standard gas, of suitable concentration for the measurement range (between 30 and 70% of the measurement range).

# Commissioning

#### **Prior checks**

Check the following points:

- ୬ Wiring completed.
- >> Detector housing grounded.
- Connection made between the connector cable braided screen and central unit ground.
- Integrity of the mechanical mounting (fixings, cable gland, and cover) ensured.

#### Powering up detector

1. Inhibit any installation alarms to avoid unexpected triggering during the operation.

2. Connect power to the detector line in accordance with the manufacturer's instructions.

22 OLC(T)100 Technical manual

# Stabilization time

After mounting, it is essential to allow the detector temperature to stabilize. In addition, after turning the power on, certain sensors require a further pre-heating time. Any adjustment before the time indicated will result in an incorrect measurement, which may in turn compromise the safety of the goods and personnel. The total waiting time is summarised below:

- Explosimeter: 2 hours.
- Oxygen detector: 1 hour.
- Se Electrochemical detector: 1 hour, excluding
  - NO (nitrogen monoxide): 12 hours.
  - HCI (hydrogen chloride): 24 hours.
  - ETO (ethylene oxide): 24-36 hours.
- Semiconductor sensor: 4 hours.
- Infra-red detector: 2 hour.

# **Opening the cover**

This stage is necessary for the 4 mA check, zeroing, and calibration of the detector. Unscrew the lid of the enclosure by using a tool positioned like a cross.

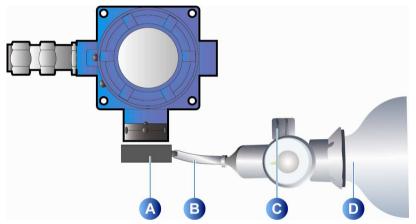


Since the calibration or disconnection of the cable can only be carried out with the cover removed, certain safety functions cannot be guaranteed. All the necessary steps should be taken before opening the lid of the enclosure if it is installed in an ATEX zone, in particular:

- > A fire permit from the appropriate department.
- >> Continuous use of a portable explosimeter.
- > Use of an intrinsically safe multimeter.
- >> Reduction to an absolute minimum of the time involved.

This observation does not concern intrinsically safe versions that are used in an ATEX gas zone (see chapter XI).

# Calibrating the OLC100




The cover of the detector remains closed, with any adjustments being carried out at the central measuring unit.

For an explosimeter, it is recommended that the detector should be calibrated by using the gas to be detected. If the user would like to calibrate the detector with a gas other than that detected and programmed in the factory, reference should be made to the table on page 30 by using the recommended gas and corresponding coefficient.

## Zeroing

Proceed as follows :



#### Figure 16 : Zeroing (OLC100).

034

- 1. Inhibit any alarm signals on the central unit.
- 2. Place the calibration shroud onto the detector head (Figure 16, "A").
- Connect the calibrator shroud to the pure air bottle "D" using a flexible hose "B".
- 4. Open the valve on the pure air bottle (flow rate 30 to 60 litres/hr) "C".
- 5. After the measurement has stabilised (approx. 2 minutes), read the display of the central measuring unit.

A displayed figure of "0.0" corresponds to 0% gas.

- 6. If a different value is displayed, adjust the "0" on the measuring unit to correct the value until a reading of exactly 0.0% is obtained.
- 7. Close the valve "C" on the bottle. Remove the calibration shroud "B" if no sensitivity control is necessary.
- 24 OLC(T)100 Technical manual

8. Reset any alarm signals on the central unit.

### Adjustment of gas sensitivity

This procedure takes place after the zeroing stage:

- 1. Inhibit any alarm signals on the central unit.
- 2. Place the calibration shroud on the detector head (Figure 17, "A").
- 3. Connect the calibration shroud to the standard gas bottle "D" by using a flexible hose "B".
- 4. Open the valve on the standard gas bottle "C" (flow rate 30 to 60 litres/hr).
- 5. After the measurement has stabilized (approx. 2 minutes), read the display of the central measuring unit.
- 6. Adjust "S" on the measuring unit in order to display the desired value.
- 7. Close valve "C" on the bottle and remove the calibration shroud "A".
- 8 . Walt for the measured signal to return to zero and reset the alarm signals on the central unit.

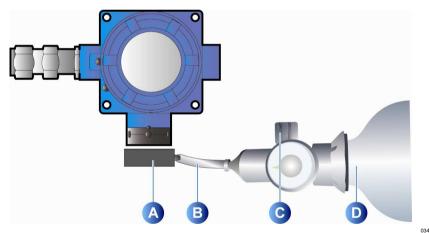
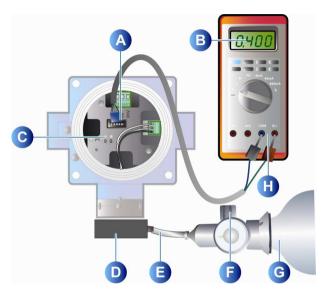




Figure 17 : Sensitivity adjustment (OLC100).

# Calibrating the OLCT100

# Zeroing (OLCT100)

Proceed as follows:



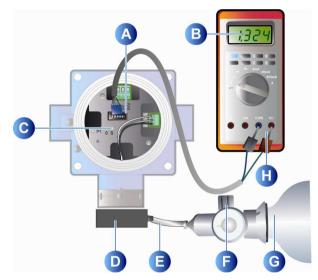
#### Figure 18 : Zeroing (OLCT100).

Inhibit any alarm signals on the central unit.

- Insert the blue and green plugs on the measurement lead into the + and multimeter sockets, respectively (0-2 V range or similar) (Figure 18, "H")
- 3. Insert the measurement lead plug into connector "A".
- 4. Place the calibration shroud on the detector head ("D").
- 5. Connect the calibration shroud to the pure air bottle "G" by using a flexible hose "E".
- 6. Open the valve "F" on the pure air bottle (flow rate 30 to 60 litres/hr).
- 7. After the measurement has stabilized (approx. 2 minutes), read the value on the multimeter "B".

A measurement of 0.4 V corresponds to 4 mA, i.e. 0% gas.

Note: for the oxygen detector, inject pure nitrogen instead of air.


- 8. If a different value is displayed, adjust the "0" control ("C") in order to correct the value until 0.4 V is exactly displayed.
- 9. Close the valve "F" on the bottle. Remove calibration ribbon cable "A", calibration pipe "D", and close the detector again if no sensitivity control is necessary.
- 10. Reset any alarm signals on the central unit.

#### Sensitivity adjustment (OLCT100)



For an explosimeter, it is recommended that the detector should be calibrated by using the gas to be detected. If the user would like to calibrate the detector with a gas other than that detected and programmed in the factory, reference should be made to the table on page 30 by using the recommended gas and corresponding coefficient.

This procedure enables the measurement to be adjusted corresponding to x% gas. Proceed as follows



#### Figure 19 : sensitivity adjustment (OLCT100).

- 1. Inhibit any alarm signals on the central unit.
- 2. Insert the blue and green plugs on the measurement lead into the + and multimeter sockets, respectively (0-2 V range or similar) (Figure 19, "H").
- 3. Insert the measurement lead into connector "A".
- 4. Place the calibration shroud on the detector head ("D").

5. Connect the calibration shroud to the standard gas bottle "G" by using a flexible hose "E".

# A stainless steel pressure gauge and Teflon tube <u>must</u> be used for toxic gases and Freons.

Note: for an oxygen detector, use a bottle of pure air or roughly 19% oxygen.

- 6. Open the valve "F" on the standard gas bottle (flow rate 30 to 60 litres/hr).
- 7. After the measurement has stabilized (approx. 2 minutes), read the value on the multimeter.

Use the following formula to determine the voltage value that is to be displayed:

Voltage displayed (mV) = 4 mA + (16 mA x bottle concentration)

Sensor range

For example, for a range of 1000 ppm CO with a standard gas bottle of 300 ppm, the voltage displayed will be:

Voltage displayed (mV) =  $4 \text{ mA} + (16 \text{ mA} \times 300) = 8.8 \text{ mV}$ 

1000

- 8. If a different value is displayed, adjust the "S" control ("C") to correct the value until an exact value of the standard gas is displayed.
- 9. Close the valve "F" on the bottle. Remove measurement cable "A", calibrate shroud "D", and close the detector again.
- 10. Wait for the measured signal to return to zero and reset the alarm signals on the central unit.

#### Calibration coefficients of explosive gases for catalytic detectors

Where an anti-poison 4F type sensor is used (only available for OLCT100), the coefficients are as follows:

| Table 3 : Calibration coefficients of explosive gases for catalytic detectors with a 4F |
|-----------------------------------------------------------------------------------------|
| sensor.                                                                                 |

| Gas         | Chemical<br>Formula             | LEL<br>% | LSE<br>% | Vapor<br>density | CH₄<br>Coeff | H <sub>2</sub><br>Coeff | Butane<br>Coeff |
|-------------|---------------------------------|----------|----------|------------------|--------------|-------------------------|-----------------|
| Acetone     | C <sub>3</sub> H <sub>6</sub> O | 2,15     | 13,0     | 2,1              | 2,24         |                         | 1,1             |
| Acetylene   | $C_2H_2$                        | 1,5      | 100      | 0,9              | 1,22         | 1,1                     |                 |
| 2-Butanone  | $C_4H_8O$                       | 1,8      | 11,5     | 2,5              | 2,46         |                         | 1,2             |
| Ethylene    | $C_2H_4$                        | 2,7      | 34,0     | 0,98             | 1,47         |                         |                 |
| Natural gas | CH <sub>4</sub>                 | 5,0      | 15,0     | 0,55             | 1,05         |                         |                 |

Cells with a gray background: gases recommended for calibrating the detector

#### Table 4 : Calibration coefficients of explosive gases for catalytic detectors

| Gas name               | Molecular<br>Formula | LEL<br>(%) | UEL<br>(%) | Flash<br>point<br>(°C) | Vapor<br>density | Coefficient<br>Calibration gas<br>CH4 (methane) | Coefficient<br>Calibration gas<br>H2(Hydrogen) | Coefficient<br>-Calibration gas<br>C4H10 (Butane) | Coefficient<br>-Calibration gas<br>C5H12 (Pentane) |
|------------------------|----------------------|------------|------------|------------------------|------------------|-------------------------------------------------|------------------------------------------------|---------------------------------------------------|----------------------------------------------------|
| Acetone                | C3H6O                | 2,15       | 13,00      | -18                    | 2,1              | 1,65                                            | 1,20                                           | 0,90                                              | 0,80                                               |
| Acetylene              | C2H2                 | 1,50       | 100        | -18                    | 0,9              | 2,35                                            | 1,75                                           | 1,25                                              | 1,15                                               |
| Ammoniac               | NH3                  | 15,00      | 30,20      | <-100                  | 0,6              | 0,90                                            | 0,65                                           | 0,50                                              | 0,45                                               |
| Butane                 | C4H10                | 1,50       | 8,50       | -60                    | 2,0              | 1,90                                            | 1,50                                           | 1,00                                              | 0,90                                               |
| Ethane                 | C2H6                 | 3,00       | 15,50      | 135                    | 1,0              | 1,50                                            | 1,10                                           | 0,80                                              | 0,75                                               |
| Ethanol                | C2H6O                | 3,30       | 19,00      | 13                     | 1,6              | 2,15                                            | 1,70                                           | 1,30                                              | 1,00                                               |
| Gasoline<br>Lead free  | /                    | 1,10       | ~6,0       | 21                     | 3à4              | 1,80                                            | 1,35                                           | 1,00                                              | 0,90                                               |
| Ethylene<br>(Ethene)   | C2H4                 | 2,70       | 34,00      | - 135                  | 1,0              | 1,65                                            | 1,20                                           | 0,90                                              | 0,80                                               |
| LPG                    | Prop+But             | 1,65       | ~9,0       | <-50                   | 1,9              | 1,65                                            | 1,20                                           | 0,90                                              | 0,80                                               |
| Diesel                 | Mélange              | 0,60       | ~6,0       | 55                     | >4               | 3,20                                            | 2,60                                           | 1,70                                              | 1,55                                               |
| Natural Gas            | CH4                  | 5,00       | 15,00      | -188                   | 0,6              | 1,05                                            | 0,75                                           | 0,60                                              | 0,55                                               |
| Heptane                | C7H16                | 1,10       | 6,70       | -4                     | 3,5              | 2,20                                            | 1,80                                           | 1,20                                              | 1,05                                               |
| Hexane                 | C6H14                | 1,20       | 7,40       | -23                    | 3,0              | 2,10                                            | 1,70                                           | 1,15                                              | 1,05                                               |
| Hydrogen               | H2                   | 4,00       | 75,60      | -                      | 0,069            | 1,25                                            | 1,00                                           | 0,70                                              | 0,60                                               |
| Methane                | CH4                  | 5,00       | 15,00      | -188                   | 0,55             | 1,00                                            | 0,75                                           | 0,55                                              | 0,50                                               |
| Nonane                 | C9H20                | 0,70       | 5,60       | 31                     | 4,4              | 4,00                                            | 3.20                                           | 2.65                                              | 2.10                                               |
| Octane                 | C8H18                | 1,00       | 6,00       | 12                     | 3,9              | 2,70                                            | 2,00                                           | 1,45                                              | 1,30                                               |
| Pentane                | C5H12                | 1,40       | 8,00       | -49                    | 2,5              | 2,10                                            | 1,70                                           | 1,15                                              | 1,00                                               |
| Propane                | C3H8                 | 2,00       | 9,5        | -104                   | 1,6              | 1.55                                            | 1,10                                           | 0.85                                              | 0,75                                               |
| Propylene<br>(Propene) | C3H6                 | 2,00       | 11,70      | -107,8                 | 1,5              | 1,65                                            | 1,20                                           | 0,90                                              | 0,80                                               |
| Styrene<br>(Vinyl      | C8H8                 | 1.1        | 8,00       | 31                     | 3.6              | 6,30                                            | 5,30                                           | 3,50                                              | 3,00                                               |

5 – Preventive maintenance

| Benzene) |       |      |      |    |     |      |      |      |      |
|----------|-------|------|------|----|-----|------|------|------|------|
| Toluene  | C7H8  | 1,20 | 7    | 5  | 3,1 | 4,00 | 2,95 | 2,15 | 1,90 |
| Xylene   | C8H10 | 1,00 | 7,60 | 25 | 3,7 | 4,00 | 2,90 | 2,15 | 1,90 |

Cells with a gray background: gases recommended for calibrating the detector

**Example** (first line of table)

Calibration of an "acetone" detector with a standard gas comprising 1% volume butane

Value to be displayed:

 $\frac{1 \% (\text{ injected butane})}{1,5 \% (\text{LEL butane})}$  x 100 x 0.95 (coefficient butane/acetone) = 63 % LEL

Note:

- LEL values vary according to the source.
- So Coefficients are accurate to  $\pm 15\%$ .

# Chapter 5 | Preventive maintenance

Periodic checks enable the equipment and installation to remain in conformity and ensure reliable detection. This chapter describes what preventative action should be taken and at what intervals. Inspection and maintenance are carried out in accordance with standards in force EN60079-17 or IEC 60079-17, with whatever editions are in force or with other national standards.

# **Frequency of maintenance**

Gas detectors are safety devices. OLDHAM recommends the regular testing of fixed gas detection installations. This type of test consists of injecting the standard gas into the detector at a sufficient concentration to activate the pre-set alarms. It is to be understood that this test is in no way a replacement for a detector calibration.

The frequency of gas tests depends on the industrial application where the detector is in use. Frequent inspections should be made in the months following the commissioning of the installation, and should then become more widely spaced provided that no significant deviation is observed. The interval between tests should not exceed 3 months. If a detector should fail to react in contact with the gas, calibration is essential. The frequency of calibrations shall be appropriate according to the results of the tests (humidity, temperature, dust, etc.); however, it must not exceed one year.

The general manager should put safety procedures in place on-site. INDUSTRIAL SCIENTIFIC cannot be held responsible for their enforcement.



To attain SIL capability level 1 in accordance with European standard EN 50402, *Requirements relating to the safety operation of fixed gas detection systems*, the maintenance interval for explosive gas detectors must be no more than 6 months. To obtain SIL capability level 2, the maintenance interval must be no more than 3 months

# Actions

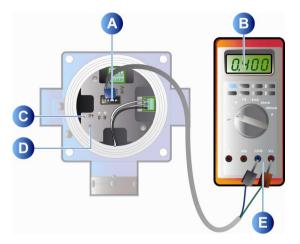
Periodic maintenance comprises the following actions:

- Removal of dust from the sensor's protective housing, using only a dry cloth. No water or solvents should be used. Severely dusty heads or sensors should be replaced immediately.
- For use in dusty explosive atmospheres, the user should undertake full and regular cleaning to avoid the build-up of dust. The maximum permissible thickness of a dust layer must be less than 5 mm.
- Replacement of screws: if the screws on the fire-proof part "d" of the body need to be replaced, screws of equal quality or better than A4.70 should be used.
- Sero inspection with pure air.
- Sas sensitivity inspection and possible adjustment, as per chapter IV.

# Chapter 6 | Maintenance

Maintenance primarily comprises changing any sensors that no longer meet their initial metrological characteristics.




Since they are liable to affect detection reliability, the tasks described in this chapter are reserved for authorized trained personnel only.

Inspection and maintenance shall be carried out in accordance with standards EN60079-17 or IEC 60079-17, with whatever editions are in force or with other national standards.

**The 4 mA level is factory-set. This value cannot be changed or adjusted.** This check does not concern explosimeter OLC100. First follow the instructions *Opening the cover*.

# Checking the current generator

Although this setting is made in the factory, it is possible that the transmitter and central unit may have to be matched. In this case, proceed as follows



#### Figure 20 : checking the current generator

- 1. Insert the blue and green plugs on the measurement lead into the + and multimeter sockets, respectively (0-2 VDC range or similar).
- 2. Insert the measurement lead plug into connector "A".
- 3. Use a small screwdriver to press the 4 mA adjust button "D".

The instrument then sends a 4 mA signal down the line.

- 4. On the central unit (measurement and automation), check that the measurement displayed corresponds to 0% of the measurement scale.
- If some different value is displayed, keep pressing the button and adjust P1 ("C").
- 6. Release the push-button "D". Remove the measurement lead when adjustment is complete.

# **Possible errors**

The table below summarizes the various possible detector errors:

### **OLC100** explosimeter

| Observed fault               | Possible cause             | Action                              |
|------------------------------|----------------------------|-------------------------------------|
| Zero setting not<br>possible | Sensor                     | Change sensor                       |
|                              | Cable                      | Check cable                         |
|                              | Main unit detector module  | Check module                        |
| Sensitivity                  | Sensor                     | Change sensor                       |
| adjustment not<br>possible   | Connector cable            | Check cable                         |
|                              | Inappropriate standard gas | Check standard gas<br>concentration |
| High concentration           | Déréglage                  | Zero setting                        |
| of explosive gases           |                            | Calibration                         |

## **OLCT100** Detector

| Observed fault               | Possible cause           | Action        |
|------------------------------|--------------------------|---------------|
| Line current 0 mA            | Connector cable          | Check cable   |
|                              | Power supply             | Check voltage |
|                              | PCB                      | Change PCB    |
| 0 mA < Line                  | Sensor                   | Change sensor |
| current < 1mA                | PCB                      | Change PCB    |
|                              | Line resistance too high | Check cable   |
|                              | Power supply             |               |
|                              |                          | Check voltage |
| Zero setting not<br>possible | Sensor                   | Change sensor |
|                              | PCB                      | Change PCB    |
| Sensitivity                  | Sensor                   | Change sensor |
| adjustment not<br>possible   | PCB                      | Change PCB    |
| High concentration           | Settings disturbed       | Zero setting  |
|                              |                          | Calibration   |
|                              |                          | 030           |

# **Replacing sensor block**

#### Standard Version



First follow the instructions in the section Opening the cover

The sensor block encloses the actual detector sensor itself. A sensor block can only be associated with a defined detector. A guide pin ensures that the sensor block goes together correctly

Figure 21 : The sensor block (the black component) fits in the cover of the head.



Follow the procedure below :

- Inhibit any alarm signals on the central unit.
- Switch off the supply to the detector.
- ▹ For a catalytic sensor, first remove the PCB connector.
- So Loosen the locking screw on the detector head and unscrew the head.
- Withdraw the (catalytic) detector head or the defective sensor block (OLCT100).
- Seplace the worn-out sensor with an identical part.
- Screw the detector head back on again and tighten the locking screws.
- Se-establish the supply to the detector from the central unit.
- Adjust the settings for the new detector (see Chapter 4, page 3).
- See Close the detector cover.
- Reset any alarm signals on the central unit.

### High temperature version

Proceed as follows for the high temperature version.

- Inhibit any alarm signals on the central unit.
- Switch off the supply to the detector.
- Loosen the maintenance screw (Figure 20, "B") on the detector head cover and remove it.
- Replace the defective detector head and replace the maintenance screw "B" on the detector head cover. Disconnect the high temperature cable from terminal block "A" on the detector head. Connect the high temperature cable to terminal block "A".

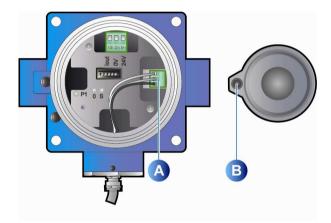



Figure 22 : OLC100HT – elements specific to changing the high temperature sensor.

Screw the detector head back on again and tighten the locking screws.

- Se-establish the supply to the detector from the central unit.
- Adjust the settings for the new detector (see 0, on page 22).
- Solution Close the detector cover.
- Section 2012 Reset any alarm signals on the central unit .

## **Calibration kit**

#### Description

The kit generally comes with the following contents:

| ld. | Description                                                                                  |  |  |
|-----|----------------------------------------------------------------------------------------------|--|--|
| А.  | Shroud for introducing the gas (optional) to be attached onto the detector to be calibrated. |  |  |
| В.  | Plastic tube (Rylsan®). A Teflon® tube should be used for corrosive gases.                   |  |  |
| С   | Pressure release and flow regulator.                                                         |  |  |
| D.  | Pressure gauge showing the internal bottle pressure.                                         |  |  |
| E.  | Bottle containing standard gas or pure air.                                                  |  |  |

Concentration of the standard gas should be between 30 and 70% of the detector's scale of measurement.

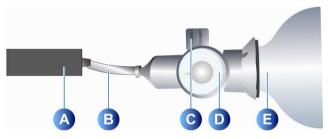



Figure 23 : calibration kit.

#### Use

Proceed as follows:

- 1. Connect the tube (Figure , rep. B) to the cap (Figure , rep. A) and to the pressure release outlet.
- 2. Position the cap on the detector head of the detector being examined.
- 3. Gradually turn the knurled knob on the flow regulator (Figure , rep. C) ") clockwise to obtain a flow of 30 to 60 l/hr.
- 4. Carry out the calibration only after the measurement has stabilized
- 5. Once calibration has finished, turn the knurled knob of the flow regulator (Figure , rep. C) anti-clockwise and remove the cap (Figure , rep. A) from the detector head of the detector being examined.

042

# Chapter 7 |Accessories

| Accessory                    | Utilization                                                                                                                      | Illustration | Reference |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| Calibration cup              | Facilitates the injection of<br>standard gas into the<br>measurement sensor                                                      |              | 6331141   |
|                              | Effect on measurement:<br>measurement similar to that<br>for natural diffusion                                                   | 204          |           |
|                              | Effect on response time: none                                                                                                    |              |           |
| PTFE remote<br>sampling cup  | Enables measurement in<br>bypass mode                                                                                            |              | 6327910   |
|                              | Effect on measurement: no<br>effect if calibration is carried<br>out under the same conditions<br>(shroud, flow rate)            | 200          |           |
|                              | Effect on response time: none                                                                                                    |              |           |
| Splash-guard<br>kit          | Protects the detector against splashes                                                                                           |              | 6329004   |
|                              | Effect on measurement: no effect.                                                                                                |              |           |
|                              | Effect on response time:<br>response time for natural<br>diffusion can increase for<br>certain gases. Contact us for<br>details. | EVE -        |           |
| Remote<br>calibration<br>cup | Enables the detection of<br>ambient gases simultaneously<br>with a standard gas injection<br>pipe.                               |              | 6327911   |
|                              | Effect on measurement: no effect.                                                                                                | 214          |           |
|                              | Effect on response time: negligible.                                                                                             | 217          |           |

| Accessory                         | Utilization                                                                                                                                                | Illustration | Reference |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| PTFE water<br>barrier             | Protects the gas inlet from<br>dust and splashing                                                                                                          |              | 6335975   |
|                                   | Effect on measurement: no effect, but cannot be used for detecting $O_3$ , HCL, HF, or $CL_2$ .                                                            |              |           |
|                                   | Effect on response time:<br>response time increased<br>(contact us for heavy gases of<br>a density greater than 3 and<br>at low concentrations < 10<br>ppm |              | 216       |
| Universal<br>Pitot tube           | Enables the measurement of<br>a gas passing through a<br>sheath                                                                                            |              | 6793322   |
|                                   | Requires the use of the gas<br>circulation head                                                                                                            |              |           |
|                                   | Effect on measurement: no effect.                                                                                                                          |              | 224       |
|                                   | Effect on response time: negligible.                                                                                                                       |              |           |
| Mounting kit                      | Enables a detector to be fixed to the ceiling.                                                                                                             |              | 6322420   |
|                                   | Effect on measurement: no effect.                                                                                                                          |              |           |
|                                   | Effect on response time: no effect.                                                                                                                        |              | 218       |
| Sunshield                         | Protects any detector<br>mounted on the outside of a<br>building.                                                                                          |              | 6123716   |
|                                   | Effect on measurement: no effect.                                                                                                                          |              |           |
|                                   | Effect on response time: negligible.                                                                                                                       |              | 222       |
| Wall<br>mounting gas<br>collector | Allows the sensor to detect<br>more quickly the gas. (Wall<br>mounting)                                                                                    |              | 6331169   |
|                                   | Effect on measurement: no effect.                                                                                                                          |              |           |
|                                   | Effect on response time:<br>response time can increase up<br>to 10%.                                                                                       |              |           |

| Accessory                    | Utilization                                                                                        | Illustration | Reference |
|------------------------------|----------------------------------------------------------------------------------------------------|--------------|-----------|
| Ceiling gas collector        | Allows the sensor to detect<br>more quickly the gas.<br>(Ceiling)                                  |              | 6331168   |
|                              | Effect on measurement: no effect.                                                                  |              |           |
|                              | Effect on response time:<br>response time can increase up<br>to 10%.                               |              |           |
| Humidifier kit               | Used for the calibration of the semi-conductor transmitters                                        |              |           |
|                              |                                                                                                    |              |           |
| Tools kit                    | Tool kit for maintenance                                                                           |              | 6147879   |
| Replacement<br>adaptater kit | Enables the detector to be<br>attached to the same place<br>without having to drill more<br>holes. |              | 6793718   |
|                              |                                                                                                    | 220          |           |

# Cable gland

| Purpose                                                                           | Reference |
|-----------------------------------------------------------------------------------|-----------|
| M20 compression gland kit for non-armored cable                                   | 6343493   |
| Material: stainless                                                               |           |
| M20 compression gland kit for non-armored cable                                   | 6343499   |
| Material: Nickel-plated brass (not recommended for use with ammonia or acetylene) |           |
| M20 compression gland kit for armored cable                                       | 6343489   |
| Material: stainless                                                               |           |
| M20 nickel-plated brass compression gland kit for<br>armored cable                | 6343495   |
| Material: Nickel-plated brass (not recommended for use with ammonia or acetylene) |           |

# Chapter 8 | Spare parts

#### List of spares for the various detectors

| ld. | Reference | Description                                                                     |
|-----|-----------|---------------------------------------------------------------------------------|
|     | 6 314 010 | Explo. Sensor 0-100% LIE CFC100 VQ1 for OLC100                                  |
|     | 6 314 042 | Infra-red sensor 0-100% LIE CH <sub>4</sub> for OLCT100                         |
|     | 6 314 043 | Infra-red sensor 0-5% vol. CO <sub>2</sub> for OLCT100                          |
|     | 6 314 016 | Electrochemical sensor 0-30% O <sub>2</sub> for OLCT100                         |
| _   | 6 314 017 | Electrochemical sensor 0-100 ppm, 0-500 ppm and 0-1000 ppm CO for OLCT100       |
|     | 6 314 018 | Electrochemical sensor 0-30.0 ppm, 0-100 ppm $H_2S$ for OLCT100                 |
|     | 6 314 019 | Electrochemical sensor 0-1000 ppm H <sub>2</sub> S for OLCT100                  |
|     | 6 314 020 | Electrochemical sensor 0-100 ppm, 0-300 ppm and 0-1000 ppm NO for OLCT100       |
|     | 6 314 021 | Electrochemical sensor 0-10.0 ppm and 0-30.0 ppm $NO_{\rm 2}$ for OLCT100       |
|     | 6 314 022 | Electrochemical sensor 0-10.0 ppm, 0-30.0 ppm and 0-100 ppm SO $_2$ for OLCT100 |
|     | 6 314 025 | Electrochemical sensor 0-10.0 ppm Cl <sub>2</sub> for OLCT100                   |
|     | 6 314 023 | Electrochemical sensor 0-2000 ppm H <sub>2</sub> for OLCT100                    |
|     | 6 314 026 | Electrochemical sensor 0-30.0 ppm, 0-100 ppm HCl for OLCT100                    |
|     | 6 314 028 | Electrochemical sensor 0-10.0 ppm and 0-30.3 ppm HCN for<br>OLCT100             |
|     | 6 314 029 | Electrochemical sensor 0-100 ppm NH <sub>3</sub> for OLCT100                    |
|     | 6 314 030 | Electrochemical sensor 0-1000 ppm NH <sub>3</sub> for OLCT100                   |
|     | 6 314 031 | Electrochemical sensor 0-5000 ppm NH <sub>3</sub> for OLCT100                   |
|     | 6 314 033 | Electrochemical sensor 0-1.00 ppm PH <sub>3</sub> for OLCT100                   |
|     | 6 314 035 | Electrochemical sensor 0-3.00 ppm CIO <sub>2</sub> for OLCT100                  |
|     | 6 314 024 | Electrochemical sensor 0-30.0 ppm ETO for OLCT100                               |
|     | 6 314 032 | Electrochemical sensor 0-1.00 ppm AsH $_3$ for OLCT100                          |
|     | 6 314 027 | Electrochemical sensor 0-50.0 ppm SiH <sub>4</sub> for OLCT100                  |
|     | 6 314 034 | Electrochemical sensor 0-1.00 ppm COCl <sub>2</sub> for OLCT100                 |
|     | 6 314 036 | Semiconductor sensor for methyl and methylene chloride for OLCT100              |

42

OLC(T)100

| ld. | Reference | Description                                                                                                                            |
|-----|-----------|----------------------------------------------------------------------------------------------------------------------------------------|
|     | 6 314 037 | Semiconductor sensor for R12, R22, R123 and FX56 freons for OLCT100                                                                    |
|     | 6 314 038 | Semiconductor sensor for R134a, R142b, R11, R23, R141b,<br>R143a, R404a, R507, R410a, R32, R227, R407c and R408a<br>freons for OLCT100 |
|     | 6 314 039 | Semiconductor sensor for ethanol, toluene, isopropanol, 2-<br>butanone and xylene for OLCT100                                          |
|     | 6 451 626 | OLC100 Board                                                                                                                           |
|     | 6 451 646 | OLCT100 IR Board                                                                                                                       |
|     | 6 451 621 | OLCT100 SC Board                                                                                                                       |
|     | 6 451 594 | OLCT100 explo. Board                                                                                                                   |
|     | 6 451 623 | OLCT100 toxic Board                                                                                                                    |
|     | 6 451 649 | Usual EC OLCT100 Board                                                                                                                 |
|     | 6 451 648 | OLCT100 02 card                                                                                                                        |

# Chapter 9 | Declaration of EC conformity

The page below reproduces the EC declaration of conformity for the OLCT100 and OLC100 family of detectors



#### Manufacturer Declaration of Conformity





The Company Industrial Scientific OLDHAM, ZI Est 62000 Arras France, declares that the following new material intended for use in Explosive Atmospheres, complies with the requirements of the following European Directives: Gas Detectors series OLC/OLCT100 I) The European Directive ATEX 94/9/CE of 23/03/94: Explosive Atmospheres **INERIS 09ATEX0075X** Nº of EC Type Examination certificate:

Harmonized European Standards:

**OLC100** OLCT100 XP - OLCT100 XP-IR

OLCT100 IS

N° of the Production Quality Assurance Notification of the Arras factory:

Issued by the Notified Body n°0080:

INERIS, rue Taffanel, 60550 Verneuil en Halatte, France.

#### II) The European Directive EMC 2004/108/EC of 15/12/2004: Electromagnetic compatibility

Harmonized European Standards:

EN 50270

#### **Functional Safety: Reliability Data**

Under normal conditions of use, the reliability data are the following:

| Type de gas        | Sensing Principle | SIL<br>Capability | $\lambda_{DU}$        | PFD <sub>AVG</sub>    | Test      | SFF       |
|--------------------|-------------------|-------------------|-----------------------|-----------------------|-----------|-----------|
| Type ue gas        | Sensing Frinciple |                   |                       |                       | Interval  |           |
| Combustibles       | Catalytic (C1000) | SIL 2             | 2,19 10-6             | 2,39 10-3             | 3 months  | 60% à 90% |
| Combustibles & CO2 | Infrared          | SIL 2             | 0,13 10 <sup>-6</sup> | 0.35 10 <sup>-3</sup> | 12 months | 60% à 90% |
| Oxygen             | Electrochemical   | SIL 2             | 0,74 10 <sup>-6</sup> | 0.81 10 <sup>-3</sup> | 3 months  | 60% à 90% |
| CO                 | Electrochemical   | SIL 2             | 1,09 10 <sup>-6</sup> | 1,19 10 <sup>-3</sup> | 3 months  | 60% à 90% |
| H2S                | Electrochemical   | SIL 2             | 2,98 10 <sup>-6</sup> | 3,26 10 <sup>-3</sup> | 3 months  | 60% à 90% |
| NH3                | Electrochemical   | SIL 2             | 4,48 10-6             | 4,91 10 <sup>-3</sup> | 3 months  | 60% à 90% |

Note: The failure rates are only valid on the real lifetime of the sensitive elements (limited time, about 3 to 5 years). Beyond that, due to ageing of the measuring cells, the rate is not significant any more.

#### Arras, 15 April 2010

**ATEX Authorized Representative** 



Industrial Scientific Oldham: Z.I. EST - B.P. 417 62027 ARRAS Cedex - FRANCE Tel +33 3 21 60 80 80 Fax +33 3 21 60 80 00

Lionel Witrant Program Manager

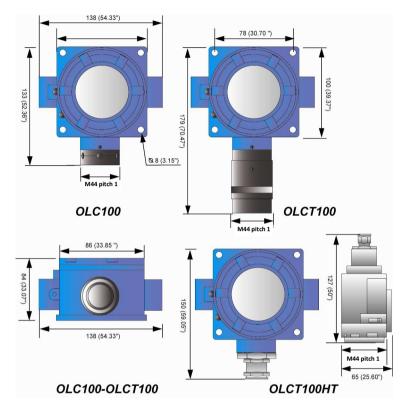
EN 60079 - 0 - 1 - 11 - 31

II 2 GD Ex d IIC T6 Gb

Tamb : - 50°C +70°C Ex t IIIC T85°C Db IP66

II 2 GD Ex ia IIC T4

EN 61241 - 0 - 1 - 11


Tamb : - 50°C à +70°C. Ex iaD 21 T135°C IP66

**INERIS 00ATEXQ403** 

# Chapter 10 | Technical specifications

OLC(T)100 Technical manual

46



# **Dimensional characteristics**

Figure 24 : dimensional characteristics of the detectors.

044

# **General Specifications**

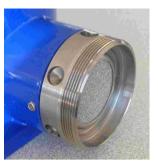
| Supply voltage at the detector                   | <ul> <li>OLC100: 340 mA (current supply).</li> </ul>                                                                                      |  |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|
| terminals:                                       | ✤ OLCT100 XP HT: 15.5 V to 32 V.                                                                                                          |  |
|                                                  | OLCT100 XP LEL: 15.5 V to 32 V.                                                                                                           |  |
|                                                  | ✤ OLCT100 XP IR: 13.5 V to 32 V.                                                                                                          |  |
|                                                  | OLCT100 XP EC: 10 V to 32 V.                                                                                                              |  |
|                                                  | ✤ OLCT100 XP SC: 15.5 V to 32 V.                                                                                                          |  |
| Average consumption:                             | ≫ OLC100: 340 mA.                                                                                                                         |  |
|                                                  | ≫ OLCT100 XP HT: 100 mA.                                                                                                                  |  |
|                                                  | ✤ OLCT100 XP LEL: 110 mA.                                                                                                                 |  |
|                                                  | ം OLCT100 XP IR: 60 mA.                                                                                                                   |  |
|                                                  | ം OLCT100 XP EC: 23.5 mA.                                                                                                                 |  |
|                                                  | ✤ OLCT100 XP SC: 100 mA.                                                                                                                  |  |
| Output current (signal):                         | <ul> <li>Current source encoded from 0 to 23 mA (non isolated)</li> </ul>                                                                 |  |
|                                                  | Linear 4 to 20 mA current reserved for measurement                                                                                        |  |
|                                                  | 0 mA: electronic fault or no power supply                                                                                                 |  |
|                                                  | ა⊷ < 1 mA: fault.                                                                                                                         |  |
|                                                  | 2 mA: Initialization mode                                                                                                                 |  |
|                                                  | Current greater than 23 mA: off-scale.                                                                                                    |  |
| Type of cable                                    | Explosimeter: screened, 3 live wires                                                                                                      |  |
|                                                  | HT Explosimeter: screened, 3 live wires                                                                                                   |  |
|                                                  | Electrochemical detector: screened, 2 live wires                                                                                          |  |
|                                                  | Infra-red detector: screened, 3 live wires                                                                                                |  |
|                                                  | Semiconductor detector: screened, 3 live wires                                                                                            |  |
| Cable inlet:                                     | M20 or ¾ NPT.                                                                                                                             |  |
| Maximum diameter of cable entering the detector: | 12 mm.                                                                                                                                    |  |
| Electromagnetic compatibility:                   | Conforms to EN50270.                                                                                                                      |  |
| International Protection rating                  | IP66.                                                                                                                                     |  |
| Explosive atmospheres:                           | Conforms to European Directive ATEX 94/9/CE (see attached Declaration) and to IEC Ex schedule for fire-<br>proof detectors.               |  |
|                                                  | SIL 2 in accordance with EN50402/EN61508.                                                                                                 |  |
|                                                  | Metrological performance in accordance with EN 50054<br>and EN 50057 (harmonized standards applied: 61779-<br>1 :2000 and 61779-4 :2000). |  |

OLC(T)100

| Weight :   | ം OLC100: 0.950 kg.                           |
|------------|-----------------------------------------------|
| -          | ം OLCT100 XP HT: 1.8 kg.                      |
|            | ം OLCT100 XP LEL: 1.0 kg.                     |
|            | ം OLCT100 XP IR: 1.1 kg.                      |
|            | ം OLCT100 XP EC: 1.1 kg.                      |
|            | ം OLCT100 XP SC: 1.1 kg.                      |
| Materials: | Epoxy painted aluminum Optional 316 stainless |

# Catalytic head (OLCT100 XP)

Common characteristics


| 50- | Measurement range      | 0–100% LEL                                              |
|-----|------------------------|---------------------------------------------------------|
| 50- | Measurement principle: | catalytic filaments                                     |
| 50  | Accuracy:              | see table below                                         |
| 50  | Temperature range:     | see table below                                         |
| 58. | Relative humidity:     | 0 to 95% RH (non-condensing relative humidity)          |
| 50  | Pressure:              | atmospheric ± 10%                                       |
| 58. | Response time:         | $T_{50}$ = 6 seconds. $T_{90}$ = 15 seconds for Methane |
| 50- | Lifetime (typical)     | 48 months                                               |
| 58  | Storage conditions:    | -50 to 70℃, 20 to 60% RH, 1 bar ± 10%, 6 months maximum |
| 58. | Warm-up time (max)     | 2 hours to first switching on power                     |
|     |                        |                                                         |

#### Specific characteristics

| Type of sensors                | Accuracy                                                 | Operating<br>temperature<br>range |
|--------------------------------|----------------------------------------------------------|-----------------------------------|
| Anti-poison sensor             | 1% LIE between 0- 70 %LIE                                | -20 to +70℃                       |
| 4F (unmarked sensor)           | 2% of the measurement between 71 and 100% LIE            |                                   |
| VQ1 sensor                     | 1% LIE between 0- 70 %LIE                                | -40 to +70℃                       |
| (sensor with identifying mark) | OLCT100 : 2% of the measurement between 71 and 100% LIE  |                                   |
|                                | OLC 100 : 5% of the measurement between 71 and 100 % LIE |                                   |
| VQ1 sensor, high               | 1% LIE between 0-70%LIE                                  | -20 to +200℃                      |
| temperature<br>assembly        | 2% of the measurement between 71 and 100% LIE            |                                   |



<sup>I</sup> Mark on sensor VQ1 Figure 25 : mark on VQ1 sensor.



4F poison resistant sensor

# Toximetric heads (OLCT100 XP and OLCT100 IS)

Common characteristics

| 50 | Measurement principle: | Electrochemical sensor |
|----|------------------------|------------------------|
| 50 | Pressure:              | Atmospheric ± 10%      |

Specific characteristics (table 1/2)

| Type of g         | gas                 | Measurement<br>range<br>(ppm) | XP<br>Version | IS<br>Version | Temperature<br>range ℃ | % RH    |
|-------------------|---------------------|-------------------------------|---------------|---------------|------------------------|---------|
| $AsH_3$           | Arsine              | 1,00                          |               |               | -20 to +40             | 20 - 90 |
| Cl <sub>2</sub>   | Chlorine            | 10,0                          |               |               | -20 to +40             | 10 - 90 |
| CIO <sub>2</sub>  | Chlorine<br>dioxide | 3,00                          |               |               | -20 to +40             | 10 - 90 |
| CO                | Carbon              | 100                           |               |               | -20 to +50             | 15 - 90 |
|                   | monoxide            | 300                           |               |               |                        |         |
|                   |                     | 1000                          |               |               |                        |         |
| COCl <sub>2</sub> | Phosgene            | 1,00                          |               |               | -20 to +40             | 15 - 90 |
| ETO               | Ethylene oxide      | 30,0                          |               |               | -20 to +50             | 15 - 90 |
| H <sub>2</sub>    | Hydrogen            | 2000                          |               |               | -20 to +50             | 15 - 90 |
| $H_2S$            | Hydrogen            | 30,0                          |               |               | -40 to +50             | 15 - 90 |
|                   | sulphide            | 100                           |               |               |                        |         |
|                   |                     | 1000                          |               | -             |                        |         |
| HCI               | Hydrochloride       | 30,0                          |               |               | -20 to +40             | 15 - 95 |
|                   | acid                | 100                           |               |               |                        |         |

| Type of g        | gas            | Measurement<br>range<br>(ppm) | XP<br>Version | IS<br>Version | Temperature<br>range <sup>°</sup> C | % RH    |
|------------------|----------------|-------------------------------|---------------|---------------|-------------------------------------|---------|
| NH <sub>3</sub>  | Ammonia        | 100                           |               |               | -20 to +40                          | 15 - 90 |
|                  |                | 1000                          |               |               |                                     |         |
|                  |                | 5000                          |               |               |                                     |         |
| NO               | Nitrogen       | 100                           |               |               | -20 to +50                          | 15 - 90 |
|                  | monoxide       | 300                           |               |               |                                     |         |
|                  |                | 1000                          |               |               |                                     |         |
| NO <sub>2</sub>  | Nitrogen       | 10,0                          |               |               | -20 to+ 50                          | 15 - 90 |
|                  | dioxide        | 30,0                          |               |               |                                     |         |
| O <sub>2</sub>   | Oxygen         | 0-30% vol                     |               |               | -20 to +50                          | 15 - 90 |
| PH <sub>3</sub>  | Phosphine      | 1,00                          |               |               | -20 to +40                          | 20 - 90 |
| SiH <sub>4</sub> | Silane         | 50,0                          |               |               | -20 to +40                          | 20 - 95 |
| SO <sub>2</sub>  | Sulfur dioxide | 10,0                          |               |               | -20 to +50                          | 15 - 90 |
|                  |                | 30,0                          |               |               |                                     |         |
|                  |                | 100                           |               |               |                                     |         |

Specific characteristics (table 2/2)

| Type of gas       | Accuracy<br>(ppm)       | Life<br>(months) | Response<br>time<br>T <sub>50</sub> / T <sub>90</sub> (s) | Storage conditions | Warm-up<br>time max<br>(h) |
|-------------------|-------------------------|------------------|-----------------------------------------------------------|--------------------|----------------------------|
| AsH₃              | +/- 0,05                | 18               | 30/120                                                    | (1)                | 1                          |
| Cl <sub>2</sub>   | +/- 0,4                 | 24               | 10/60                                                     | (1)                | 1                          |
| CIO <sub>2</sub>  | +/- 0,3                 | 24               | 20/120                                                    | (1)                | 1                          |
| СО                | +/- 3<br>(range 0-100)  | 36               | 15/40                                                     | (1)                | 1                          |
| COCI <sub>2</sub> | +/- 0,05                | 12               | 60/180                                                    | (2)                | 1                          |
| ETO               | +/- 1                   | 36               | 50/240                                                    | (1)                | 24                         |
| H <sub>2</sub>    | +/-5 %                  | 24               | 30/50                                                     | (1)                | 1                          |
| $H_2S$            | +/- 1,5<br>(range 0-30) | 36               | 15/30                                                     | (1)                | 1                          |
| HCI               | +/- 0,4<br>(range 0-10) | 24               | 30/150                                                    | (1)                | 24                         |
| NH <sub>3</sub>   | +/- 5                   | 24               | 25/70                                                     | (1)                | 1                          |
|                   | +/- 20                  |                  | 20/60                                                     |                    |                            |
|                   | +/-150 or 10%           |                  | 60/180                                                    |                    |                            |
| NO                | +/- 2<br>(range 100)    | 36               | 10/30                                                     | (1)                | 1                          |

52

OLC(T)100

| Type of<br>gas   | Accuracy<br>(ppm)                         | Life<br>(months) | Response<br>time<br>T <sub>50</sub> / T <sub>90</sub> (s) | Storage<br>conditions | Warm-up<br>time max<br>(h) |
|------------------|-------------------------------------------|------------------|-----------------------------------------------------------|-----------------------|----------------------------|
| NO <sub>2</sub>  | +/- 0,8                                   | 24               | 30/60                                                     | (1)                   | 12                         |
| O <sub>2</sub>   | 0,4 % vol<br>(15 to 22 % O <sub>2</sub> ) | 28               | 6-15                                                      | (1)                   | Aucun (3)                  |
| $PH_3$           | +/- 0,05                                  | 18               | 30/120                                                    | (1)                   | 1                          |
| SiH <sub>4</sub> | +/- 1                                     | 18               | 25/120                                                    | (1)                   | 1                          |
| SO <sub>2</sub>  | +/- 0,7<br>(range 0-10)                   | 36               | 15/45                                                     | (1)                   | 1                          |

| (1) | 4-20 ℃           | (2) | 4-20 ℃           |
|-----|------------------|-----|------------------|
|     | 20 – 60 % RH     |     | 20 – 60 % RH     |
|     | 1 bar ± 10 %     |     | 1 bar ± 10 %     |
|     | 6 months maximum |     | 3 months maximum |

(3) If cartridge is mounted in the transmitter

## Semiconductor heads (OLCT100 XP)

Common characteristics

| 58- | Measurement principle: | semiconductor                                            |
|-----|------------------------|----------------------------------------------------------|
| 30  | Temperature range:     | -20℃ to +60℃                                             |
| 30  | Relative humidity:     | 20 to 95% RH (non-condensing relative humidity)          |
| 30  | Pressure:              | atmospheric ± 10%                                        |
| 30  | Lifetime (typical):    | 36 months                                                |
| 38  | Storage conditions:    | -20 to 50 □, 20 to 60% RH, 1 bar ± 10%, 6 months maximum |
| 30  | Warm-up time (max):    | 4 hours to first switching on power                      |

| Type of gas        |            | Measurement<br>range | Accuracy            | T <sub>50</sub> / T <sub>90</sub> (s) |
|--------------------|------------|----------------------|---------------------|---------------------------------------|
| Methyl chloride    | CH₃CI      | 500 ppm              | +/- 15% (from 20 to | 25/50                                 |
| Methylene chloride | $CH_2CI_2$ | 500 ppm              | 70% FS)             |                                       |
| Freon R12          |            | 1 %vol               | +/- 15% (from 20 to | 25 / 50                               |
| Freon R22          |            | 2000 ppm             | 70% FS)             |                                       |
| Freon R123         |            | 2000 ppm             |                     |                                       |
| FX56               |            | 2000 ppm             |                     |                                       |
| Freon R134 a       |            | 2000 ppm             | +/- 15% (from 20 to | 25 / 50                               |
| Freon R142 b       | n R142 b   |                      | 70% FS)             |                                       |
| Freon R11          |            | 1 % vol              |                     |                                       |
|                    |            |                      | +/- 15% (from 20 to |                                       |

| Type of gas      | Measurement<br>range | Accuracy            | T <sub>50</sub> / T <sub>90</sub> (s) |
|------------------|----------------------|---------------------|---------------------------------------|
| Freon R23        | 1 % vol              | 70% FS)             |                                       |
| Freon R141 b     | 2000 ppm             |                     | 25 / 50                               |
| Freon R143 a     | 2000 ppm             |                     |                                       |
| Freon R404 a     | 2000 ppm             |                     |                                       |
| Freon R507       | 2000 ppm             |                     |                                       |
| Freon R410 a     | 1000 ppm             |                     |                                       |
| Freon R32        | 1000 ppm             |                     |                                       |
| Freon R227       | 1 % vol              |                     |                                       |
| Freon R407 c     | 1000 ppm             |                     |                                       |
| Freon 408 a      | 4000 ppm             |                     |                                       |
| Ethanol          | 500 ppm              | +/- 15% (from 20 to | 25 / 50                               |
| Toluene          | 500 ppm              | 70% FS)             |                                       |
| Isopropanol      | 500 ppm              |                     |                                       |
| 2-butanone (MEK) | 500 ppm              |                     |                                       |
| Xylene           | 500 ppm              |                     |                                       |

# Infrared head (OLCT100 XP-IR)

| 5 <b>0</b> - | Measurement range:     | 0–100% LEL (explosive gases)                                                       |
|--------------|------------------------|------------------------------------------------------------------------------------|
|              |                        | 0–5% CO <sub>2</sub> (carbon dioxide)                                              |
| 5 <b>0</b> - | Measurement principle: | Infra-red absorption                                                               |
| 50           | Accuracy:              | - CO <sub>2</sub> version: +/- 3% of full-scale at mid-scale (20°C)                |
|              |                        | - LEL version: +/- 5% of full-scale at mid-scale (20°C)                            |
| 5 <b>0</b> - | Temperature range:     | -25 to +55 ℃                                                                       |
| 50           | Relative humidity:     | 0 to 95 % RH (non-condensing relative humidity)                                    |
| 5 <b>8</b> . | Pressure:              | Partial pressure measurement (the measurement changes with pressure)               |
| 50           | Response time:         | - CO <sub>2</sub> version: $T_{50} \rightarrow 11$ s and $T_{90} \rightarrow 30$ s |
|              |                        | - LEL version: $T_{50} \rightarrow 11$ s and $T_{90} \rightarrow 30$ s             |
| 5 <b>0</b> - | Lifetime (typical):    | 48 months                                                                          |
| 38-          | Storage conditions:    | 4–20℃<br>10–60% RH<br>1 bar ± 10%<br>6 months maximum                              |
| 5 <b>8</b> - | Warm-up time (max):    | 2 hours to first switching on power                                                |

OLC(T)100

# Chapter 11 |Specific instructions for use in explosive atmospheres and operational safety

### **General comments**

OLC/OLCT 100 conforms to the requirements of European Directive ATEX 94/9/CE relating to explosive Dust and Gas atmospheres. On account of their metrological performance as tested by the accredited organization INERIS (in process), the OLC/OLCT 100 transmitter detectors intended for the measurement of explosive gases are classed as safety devices in the sense of the European Directive and may, therefore, contribute to limiting the risks of explosion.

The information given in the following sections should be respected and taken into account by the manager of the site where the equipment is installed. As far as the aim of improving the health and safety of workers who are exposed to the risks of explosive atmospheres is concerned, refer to European Directive ATEX 1999/92/CE.

OLC/OLCT 100 detectors also conform to the requirements of the IEC international certification scheme relating to explosive Dust and Gas atmospheres.

Two modes of protection can be used:

- № The mode of protection using fire-proof housing "d" for gaseous explosive atmospheres, or housing "tb" for explosive dust atmospheres.
- № The intrinsically safe "ia" mode of protection for gaseous explosive atmospheres, or "id" for explosive dust atmospheres.

# Metrological performance for the detection of flammable gases

Standard C1000 OLC/OLCT100 filament version detectors conform to IEC / EN 60079-29-1 standards, *Suitability requirements for the operation of flammable gas detectors*, category 0 to 100% LIE Group II, reference gas 0-100% LIE Methane and Propane.

These detectors are classed as safety devices according to ATEX 94/9/CE Directive and may, therefore, contribute to limiting the risks of explosion. For this to be so, they must be connected to Oldham type MX15, MX32, MX42A, MX48, MX43, MX52 or MX62 detection units, or otherwise connected to measurement units with 4-20 mA inputs conforming to section 1.5 of Annex II of Atex Directive 94/9/CE and compatible with their characteristics (see transfer curve).

#### Cable inlets

These shall be of a type certified for use in explosive atmospheres. They shall be protected to (or better than) IP66 and shall be installed in accordance with standard ICE/EN 60079-14 (whatever edition is in force), and possibly in accordance with further requirements related to the local or national regulations.

The cables should be capable of use at a temperature equal to or greater than 80°C.

### **Threaded joints**

The threaded joints on the OLC(T)100 may be lubricated to maintain fire-proof protection. Only non-hardening lubricants or non-corrosive agents having no volatile solvents may be used. Warning: silicone based lubricants are strictly forbidden, since they contaminate the OLC(T)100 detector elements.

### **Operational safety**

The detector is certified by INERIS (in process) to be in conformity with the requirements of standard EN 50402 for SIL capability 1 and 2 for the  $CH_4$  and HC versions. Applicable since 2005, this standard is concerned with electrical apparatuses for the detection and measurement of oxygen or toxic or flammable gases or vapors, and defines the requirements relating to the safety function of fixed gas detection systems.

The detector has been developed in conformity with standard EN/CEI 61508.

The safety function of the OLC/OLCT100 detector is the detection of flammable gases using catalytic technology and a 4-20 mA current output proportional to the gas concentration expressed as a percentage of LIE, respectively from 0 to 100% LIE. In the event of failure, the current will assume a fall-back value less than or equal to 1 mA or greater than or equal to 23 mA.

The safety function is no longer valid:

- After power has been switched on, while the measurement sensor is stabilizing and during start-up tests, the output current shall be in maintenance mode (2 mA).
- When the push button is pressed (forcing the current to 4 mA), the output current will be frozen at 4 mA.

### **Reliability data**

These data are based on feedback from experience in the field. The analysis of the information recorded during maintenance by our technical team has enabled us to determine the following Probabilities of Failure on Demand under normal conditions of use:

| Type of gas | Measurement<br>principle | SIL<br>Capability | $\lambda_{DU}$        | PFD <sub>AVG</sub>    | Test<br>period | SFF           |
|-------------|--------------------------|-------------------|-----------------------|-----------------------|----------------|---------------|
| LEL         | Catalytic(C1000)         | SIL 2             | 2,19 10 <sup>-6</sup> | 2,39 10 <sup>-3</sup> | 3 months       | 60% to<br>90% |
| LEL CO2     | Infrared                 | SIL 2             | 0,13 10 <sup>-6</sup> | 0.35 10 <sup>-3</sup> | 12<br>months   | 60% to<br>90% |
| Oxygen      | Electrochemical          | SIL 2             | 0,74 10 <sup>-6</sup> | 0.81 10 <sup>-3</sup> | 3 months       | 60% to<br>90% |
| CO          | Electrochemical          | SIL 2             | 1,09 10 <sup>-6</sup> | 1,19 10 <sup>-3</sup> | 3 months       | 60% to<br>90% |
| H2S         | Electrochemical          | SIL 2             | 2,98 10 <sup>-6</sup> | 3,26 10 <sup>-3</sup> | 3 months       | 60% to<br>90% |
| NH3         | Electrochemical          | SIL 2             | 4,48 10 <sup>-6</sup> | 4,91 10 <sup>-3</sup> | 3 months       | 60% to<br>90% |

# Detector in intrinsically safe "ia" protective mode: Special use conditions

The detector must be powered by an intrinsically safe source.

The detector input characteristics on the J3 power plot are:

Ui = 28V, li = 93.3 mA, Ci = 39.2 nF, Li = 0

Ci = 2.39  $\mu$ F with Ui = 10.5V, Ci = 4.32 $\mu$ F with Ui = 8.6V

The detector may be opened in a gaseous explosive zone (dusty non-explosive) only to change the sensor block or for maintenance or to connect a compatible intrinsically safe voltmeter with the following characteristics:

- Certified for use in explosive atmospheres (Group IIc), no generator of current or voltage
- Ui max <= 28V; li max <= 93.3 mA
- Li ≤ 3.5 mH
- Ci  $\leq$  44 nF under 28V ; Ci  $\leq$  20 nF under 10.5 V ; Ci  $\leq$  0.88  $\mu F$  under 8.6V

# Annexe | Ordering information

## **Gas List**

Please find below the list of gases that the OLC/OLCT100 detector can detect.

| Gas number | Gas                               |
|------------|-----------------------------------|
| 001        | Methane 0-100 % LEL               |
| 002        | Methane 0-100% LEL (4.4% vol)     |
| 003        | Hydrogen 0-100% LEL               |
| 004        | Butane 0-100% LEL                 |
| 005        | Propane 0-100% LEL                |
| 006        | Ammonia 0-100% LEL                |
| 007        | Ethyl acetate 0-100% LEL          |
| 008        | Butyl Acetate 0-100% LEL          |
| 009        | Methyl acetate methyle 0-100% LEL |
| 010        | Acetone 0-100% LEL                |
| 011        | Acetonitrile 0-100% LEL           |
| 012        | Acetylene 0-100% LEL              |
| 013        | Acrylic acid 0-100% LEL           |
| 014        | Acrolein 0-100% LEL               |
| 015        | Butyl acrylate 0-100% LEL         |
| 016        | Ethyl avrylate 0-100% LEL         |
| 017        | Acrylonitrile 0-100% LEL          |
| 018        | Benzene 0-100% LEL                |
| 019        | 1.3-Butadiene 0-100% LEL          |
| 020        | Butanol (isobutanol) 0-100% LEL   |
| 021        | 2-Butanone 0-100% LEL             |
| 022        | Cumene 0-100% LEL                 |
| 023        | Cyclohexane 0-100% LEL            |
| 024        | Cyclohexanone 0-100% LEL          |
| 025        | Dimethylether 0-100% LEL          |
| 026        | Dodecane 0-100% LEL               |
| 027        | Ethane 0-100% LEL                 |
| 028        | Ethanol 0-100% LEL                |
| 029        | Ether (diethylether) 0-100% LEL   |
| 030        | Ethylene 0-100% LEL               |
| 031        | Formaldehyde 0-100% LEL           |
| 032        | LPG 0-100% LEL                    |
| 033        | Diesel 0-100% LEL                 |
| 034        | Natural gas 0-100% LEL            |

| 035         Heptane 0-100% LEL           036         Hexane 0-100% LEL           037         Isobutane 0-100% LEL           039         Isobutene 0-100% LEL           040         Isopropanol 0-100% LEL           041         Kerosene (JP4) 0-100% LEL           042         Methalcrylate methyl 0-100% LEL           043         Methanol 0-100% LEL           044         Methylamine 0-100% LEL           045         Naphta 0-100% LEL           046         Naphtalene 0-100% LEL           047         Nonane 0-100% LEL           048         Octane 0-100% LEL           049         Ethylene Oxide (epoxyethane) 0-100% LEL           050         Propylene Oxide (Epoxypropane) 0-100% LEL           051         Pentane 0-100% LEL           052         Propylene 0-100% LEL           054         Styrene 0-100% LEL           055         Super SP95 0-100% LEL           056         Toluene 0-100% LEL           057         Triethylamine 0-100% LEL           058         White spirit 0-100% LEL           059         Xylene 0-100% LEL           060         Methane 0-100% volume           061         Hydrogen 0-100% volume           062         Heli                                | Gas number | Gas                                     |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------|--|--|--|
| 038         Isobutene 0-100% LEL           039         Isobutene 0-100% LEL           040         Isopropanol 0-100% LEL           041         Kerosene (JP4) 0-100% LEL           042         Methalcrylate methyl 0-100% LEL           043         Methanol 0-100% LEL           044         Methylamine 0-100% LEL           045         Naphta 0-100% LEL           046         Naphtalene 0-100% LEL           047         Nonane 0-100% LEL           048         Octane 0-100% LEL           049         Ethylene Oxide (epoxyethane) 0-100% LEL           050         Propylene Oxide (Epoxypropane) 0-100% LEL           051         Pentane 0-100% LEL           052         Propylene 0-100% LEL           054         Styrene 0-100% LEL           055         Super SP95 0-100% LEL           056         Toluene 0-100% LEL           057         Triethylamine 0-100% LEL           058         White spirit 0-100% LEL           059         Xylene 0-100% volume           061         Hydrogen 0-100% volume           062         Helium 0-100% volume           063         SF6 0-100% volume           062         CO, 0-300 ppm           203         CO, 0-1                                | 035        | Heptane 0-100 % LEL                     |  |  |  |
| 038         Isobutene 0-100% LEL           039         Isobutene 0-100% LEL           040         Isopropanol 0-100% LEL           041         Kerosene (JP4) 0-100% LEL           042         Methalcrylate methyl 0-100% LEL           043         Methanol 0-100% LEL           044         Methylamine 0-100% LEL           045         Naphta 0-100% LEL           046         Naphtalene 0-100% LEL           047         Nonane 0-100% LEL           048         Octane 0-100% LEL           049         Ethylene Oxide (epoxyethane) 0-100% LEL           050         Propylene Oxide (Epoxypropane) 0-100% LEL           051         Pentane 0-100% LEL           052         Propylene 0-100% LEL           054         Styrene 0-100% LEL           055         Super SP95 0-100% LEL           056         Toluene 0-100% LEL           057         Triethylamine 0-100% LEL           058         White spirit 0-100% LEL           059         Xylene 0-100% volume           061         Hydrogen 0-100% volume           062         Helium 0-100% volume           063         SF6 0-100% volume           062         CO, 0-300 ppm           203         CO, 0-1                                | 036        |                                         |  |  |  |
| 040         Isopropanol 0-100% LEL           041         Kerosene (JP4) 0-100% LEL           042         Methalcrylate methyl 0-100% LEL           043         Methanol 0-100% LEL           044         Methylamine 0-100% LEL           045         Naphta 0-100% LEL           046         Naphta 0-100% LEL           047         Nonane 0-100% LEL           048         Octane 0-100% LEL           049         Ethylene Oxide (epoxyethane) 0-100% LEL           050         Propylene Oxide (Epoxypropane) 0-100% LEL           051         Pentane 0-100% LEL           052         Propylene 0-100% LEL           054         Styrene 0-100% LEL           055         Super SP95 0-100% LEL           056         Toluene 0-100% LEL           057         Triethylamine 0-100% LEL           058         White spirit 0-100% LEL           059         Xylene 0-100% Volume           060         Methane 0-100% volume           061         Hydrogen 0-100% volume           062         Helium 0-100% volume           063         SF6 0-100% volume           064         CO, 0-300 ppm           205         CO, 0-100 ppm           204         CO, 0-300 ppm <td>038</td> <td colspan="3"></td> | 038        |                                         |  |  |  |
| 041         Kerosene (JP4) 0-100% LEL           042         Methalcrylate methyl 0-100% LEL           043         Methalorylate methyl 0-100% LEL           044         Methylamine 0-100% LEL           045         Naphta 0-100% LEL           046         Naphtalene 0-100% LEL           047         Nonane 0-100% LEL           048         Octane 0-100% LEL           049         Ethylene Oxide (epoxyethane) 0-100% LEL           050         Propylene Oxide (Epoxypropane) 0-100% LEL           051         Pentane 0-100% LEL           052         Propylene 0-100% LEL           054         Styrene 0-100% LEL           055         Super SP95 0-100% LEL           056         Toluene 0-100% LEL           057         Triethylamine 0-100% LEL           058         White spirit 0-100% LEL           059         Xylene 0-100% volume           060         Methane 0-100% volume           061         Hydrogen 0-100% volume           062         Helium 0-100% volume           063         SF6 0-100% volume           062         Helium 0-100% volume           063         SF6 0-100% volume           062         Helium 0-100% volume           063                                 | 039        |                                         |  |  |  |
| 042         Methalcrylate methyl 0-100% LEL           043         Methanol 0-100% LEL           044         Methylamine 0-100% LEL           045         Naphta 0-100% LEL           046         Naphtalene 0-100% LEL           047         Nonane 0-100% LEL           048         Octane 0-100% LEL           049         Ethylene Oxide (epoxyethane) 0-100% LEL           050         Propylene Oxide (Epoxypropane) 0-100% LEL           051         Pentane 0-100% LEL           052         Propylene 0-100% LEL           054         Styrene 0-100% LEL           055         Super SP95 0-100% LEL           056         Toluene 0-100% LEL           057         Triethylamine 0-100% LEL           058         White spirit 0-100% LEL           059         Xylene 0-100% volume           060         Methane 0-100% volume           061         Hydrogen 0-100% volume           062         Helium 0-100% volume           063         SF6 0-1000% volume           062         CO, 0-300 ppm           203         CO, 0-1000 ppm           204         CO, 0-300 ppm           205         CO, 0-1,000 ppm           215         H2S, 0-1,000 ppm <td>040</td> <td colspan="4"></td>           | 040        |                                         |  |  |  |
| 042         Methalcrylate methyl 0-100% LEL           043         Methanol 0-100% LEL           044         Methylamine 0-100% LEL           045         Naphta 0-100% LEL           046         Naphtalene 0-100% LEL           047         Nonane 0-100% LEL           048         Octane 0-100% LEL           049         Ethylene Oxide (epoxyethane) 0-100% LEL           050         Propylene Oxide (Epoxypropane) 0-100% LEL           051         Pentane 0-100% LEL           052         Propylene 0-100% LEL           054         Styrene 0-100% LEL           055         Super SP95 0-100% LEL           056         Toluene 0-100% LEL           057         Triethylamine 0-100% LEL           058         White spirit 0-100% LEL           059         Xylene 0-100% LEL           060         Methane 0-100% volume           061         Hydrogen 0-100% volume           062         Helium 0-100% volume           063         SF6 0-100% volume           064         CO, 0-300 ppm           205         CO, 0-1000 ppm           204         CO, 0-300 ppm           205         CO, 0-1,000 ppm           215         H2S, 0-1,000 ppm                                                  | 041        | Kerosene (JP4) 0-100% LEL               |  |  |  |
| 044         Methylamine 0-100% LEL           045         Naphta 0-100% LEL           046         Naphtalene 0-100% LEL           047         Nonane 0-100% LEL           048         Octane 0-100% LEL           049         Ethylene Oxide (epoxyethane) 0-100% LEL           050         Propylene Oxide (Epoxypropane) 0-100% LEL           051         Pentane 0-100% LEL           052         Propylene 0.100% LEL           054         Styrene 0-100% LEL           055         Super SP95 0-100% LEL           056         Toluene 0-100% LEL           057         Triethylamine 0-100% LEL           058         White spirit 0-100% LEL           059         Xylene 0-100% Velume           060         Methane 0-100% volume           061         Hydrogen 0-100% volume           062         Helium 0-100% volume           063         SF6 0-100% volume           020         Oxygen O2 (electrochemical) 0-30% vol           203         CO, 0-100 ppm           213         H2S, 0-30 ppm           214         H2S, 0-100 ppm           215         H2S, 0-100 ppm           216         NO, 0-100 ppm           217         NO, 0-300 ppm                                                   | 042        |                                         |  |  |  |
| 044         Methylamine 0-100% LEL           045         Naphta 0-100% LEL           046         Naphtalene 0-100% LEL           047         Nonane 0-100% LEL           048         Octane 0-100% LEL           049         Ethylene Oxide (epoxyethane) 0-100% LEL           050         Propylene Oxide (Epoxypropane) 0-100% LEL           051         Pentane 0-100% LEL           052         Propylene 0.100% LEL           054         Styrene 0-100% LEL           055         Super SP95 0-100% LEL           056         Toluene 0-100% LEL           057         Triethylamine 0-100% LEL           058         White spirit 0-100% LEL           059         Xylene 0-100% Velume           060         Methane 0-100% volume           061         Hydrogen 0-100% volume           062         Helium 0-100% volume           063         SF6 0-100% volume           020         Oxygen O2 (electrochemical) 0-30% vol           203         CO, 0-100 ppm           213         H2S, 0-30 ppm           214         H2S, 0-100 ppm           215         H2S, 0-100 ppm           216         NO, 0-100 ppm           217         NO, 0-300 ppm                                                   | 043        | Methanol 0-100% LEL                     |  |  |  |
| 046         Naphtalene 0-100% LEL           047         Nonane 0-100% LEL           048         Octane 0-100% LEL           049         Ethylene Oxide (epoxyethane) 0-100% LEL           050         Propylene Oxide (Epoxypropane) 0-100% LEL           051         Pentane 0-100% LEL           052         Propylene 0-100% LEL           054         Styrene 0-100% LEL           055         Super SP95 0-100% LEL           056         Toluene 0-100% LEL           057         Triethylamine 0-100% LEL           058         White spirit 0-100% LEL           059         Xylene 0-100% LEL           060         Methane 0-100% volume           061         Hydrogen 0-100% volume           062         Helium 0-100% volume           063         SF6 0-100% volume           063         SF6 0-100% volume           200         Oxygen O2 (electrochemical) 0-30% vol           203         CO, 0-100 ppm           214         H2S, 0-30 ppm           215         H2S, 0-100 ppm           216         NO, 0-100 ppm           217         NO, 0-300 ppm           216         NO, 0-100 ppm           217         NO, 0-300 ppm                                                                | 044        |                                         |  |  |  |
| 047         Nonane 0-100% LEL           048         Octane 0-100% LEL           049         Ethylene Oxide (epoxyethane) 0-100% LEL           050         Propylene Oxide (Epoxypropane) 0-100% LEL           051         Pentane 0-100% LEL           052         Propylene 0-100% LEL           054         Styrene 0-100% LEL           055         Super SP95 0-100% LEL           056         Toluene 0-100% LEL           057         Triethylamine 0-100% LEL           058         White spirit 0-100% LEL           059         Xylene 0-100% LEL           060         Methane 0-100% volume           061         Hydrogen 0-100% volume           062         Helium 0-100% volume           063         SF6 0-100% volume           064         CO, 0-300 ppm           205         CO, 0-100 ppm           204         CO, 0-300 ppm           205         CO, 0-100 ppm           213         H2S, 0-1,000 ppm           214         H2S, 0-1,000 ppm           215         H2S, 0-1,000 ppm           216         NO, 0-100 ppm           217         NO, 0-300 ppm           218         NO, 0-100 ppm           219         NO                                                                   | 045        |                                         |  |  |  |
| 048         Octane 0-100% LEL           049         Ethylene Oxide (epoxyethane) 0-100% LEL           050         Propylene Oxide (Epoxypropane) 0-100% LEL           051         Pentane 0-100% LEL           052         Propylene 0-100% LEL           054         Styrene 0-100% LEL           055         Super SP95 0-100% LEL           056         Toluene 0-100% LEL           057         Triethylamine 0-100% LEL           058         White spirit 0-100% LEL           059         Xylene 0-100% Velume           060         Methane 0-100% volume           061         Hydrogen 0-100% volume           062         Helium 0-100% volume           063         SF6 0-100% volume           200         Oxygen O2 (electrochemical) 0-30% vol           203         CO, 0-100 ppm           204         CO, 0-300 ppm           213         H2S, 0-30 ppm           214         H2S, 0-1,000 ppm           215         H2S, 0-1,000 ppm           216         NO, 0-100 ppm           217         NO, 0-300 ppm           218         NO, 0-100 ppm           219         NO2, 0-10 ppm           212         SO2, 0-10 ppm                                                                        | 046        | Naphtalene 0-100% LEL                   |  |  |  |
| 049         Ethylene Oxide (epoxyethane) 0-100% LEL           050         Propylene Oxide (Epoxypropane) 0-100% LEL           051         Pentane 0-100% LEL           052         Propylene 0-100% LEL           054         Styrene 0-100% LEL           055         Super SP95 0-100% LEL           056         Toluene 0-100% LEL           057         Triethylamine 0-100% LEL           058         White spirit 0-100% LEL           059         Xylene 0-100% LEL           060         Methane 0-100% volume           061         Hydrogen 0-100% volume           062         Helium 0-100% volume           063         SF6 0-100% volume           063         SF6 0-100% ppm           204         CO, 0-300 ppm           205         CO, 0-1,000 ppm           213         H2S, 0-30 ppm           214         H2S, 0-100 ppm           215         H2S, 0-1,000 ppm           216         NO, 0-100 ppm           217         NO, 0-300 ppm           218         NO, 0-1,000 ppm           219         NO2, 0-10 ppm           220         NO2, 0-10 ppm           221         SO2, 0-10 ppm                                                                                                    | 047        | Nonane 0-100% LEL                       |  |  |  |
| 050         Propylene Oxide (Epoxypropane) 0-100% LEL           051         Pentane 0-100% LEL           052         Propylene 0-100% LEL           054         Styrene 0-100% LEL           055         Super SP95 0-100% LEL           056         Toluene 0-100% LEL           057         Triethylamine 0-100% LEL           058         White spirit 0-100% LEL           059         Xylene 0-100% LEL           060         Methane 0-100% volume           061         Hydrogen 0-100% volume           062         Helium 0-100% volume           063         SF6 0-100% volume           063         SF6 0-100% volume           200         Oxygen O2 (electrochemical) 0-30% vol           203         CO, 0-100 ppm           204         CO, 0-300 ppm           213         H2S, 0-30 ppm           214         H2S, 0-100 ppm           215         H2S, 0-100 ppm           216         NO, 0-100 ppm           217         NO, 0-300 ppm           218         NO, 0-1,000 ppm           219         NO2, 0-10 ppm           220         NO2, 0-10 ppm           221         SO2, 0-10 ppm                                                                                                       | 048        |                                         |  |  |  |
| 050         Propylene Oxide (Epoxypropane) 0-100% LEL           051         Pentane 0-100% LEL           052         Propylene 0-100% LEL           054         Styrene 0-100% LEL           055         Super SP95 0-100% LEL           056         Toluene 0-100% LEL           057         Triethylamine 0-100% LEL           058         White spirit 0-100% LEL           059         Xylene 0-100% LEL           060         Methane 0-100% volume           061         Hydrogen 0-100% volume           062         Helium 0-100% volume           063         SF6 0-100% volume           063         SF6 0-100% volume           200         Oxygen O2 (electrochemical) 0-30% vol           203         CO, 0-100 ppm           204         CO, 0-300 ppm           213         H2S, 0-30 ppm           214         H2S, 0-100 ppm           215         H2S, 0-100 ppm           216         NO, 0-100 ppm           217         NO, 0-300 ppm           218         NO, 0-1,000 ppm           219         NO2, 0-10 ppm           220         NO2, 0-10 ppm           221         SO2, 0-10 ppm                                                                                                       | 049        | Ethylene Oxide (epoxyethane) 0-100% LEL |  |  |  |
| 052         Propylene 0-100% LEL           054         Styrene 0-100% LEL           055         Super SP95 0-100% LEL           056         Toluene 0-100% LEL           057         Triethylamine 0-100% LEL           058         White spirit 0-100% LEL           059         Xylene 0-100% LEL           060         Methane 0-100% volume           061         Hydrogen 0-100% volume           062         Helium 0-100% volume           063         SF6 0-100% volume           063         SF6 0-100% volume           063         CO, 0-100 ppm           204         CO, 0-300 ppm           205         CO, 0-1,000 ppm           213         H2S, 0-30 ppm           214         H2S, 0-100 ppm           215         H2S, 0-100 ppm           216         NO, 0-100 ppm           217         NO, 0-300 ppm           218         NO, 0-100 ppm           219         NO2, 0-10 ppm           220         NO2, 0-30 ppm           221         SO2, 0-10 ppm                                                                                                                                                                                                                                        | 050        |                                         |  |  |  |
| 054         Styrene 0-100% LEL           055         Super SP95 0-100% LEL           056         Toluene 0-100% LEL           057         Triethylamine 0-100% LEL           058         White spirit 0-100% LEL           059         Xylene 0-100% volume           060         Methane 0-100% volume           061         Hydrogen 0-100% volume           062         Helium 0-100% volume           063         SF6 0-100% volume           200         Oxygen O2 (electrochemical) 0-30% vol           203         CO, 0-100 ppm           204         CO, 0-300 ppm           213         H2S, 0-30 ppm           214         H2S, 0-100 ppm           215         H2S, 0-100 ppm           216         NO, 0-100 ppm           217         NO, 0-300 ppm           218         NO, 0-100 ppm           219         NO2, 0-10 ppm           212         SO2, 0-10 ppm                                                                                                                                                                                                                                                                                                                                      | 051        | Pentane 0-100% LEL                      |  |  |  |
| O55         Super SP95 0-100% LEL           056         Toluene 0-100% LEL           057         Triethylamine 0-100% LEL           058         White spirit 0-100% LEL           059         Xylene 0-100% volume           060         Methane 0-100% volume           061         Hydrogen 0-100% volume           062         Helium 0-100% volume           063         SF6 0-100% volume           063         SF6 0-100% volume           200         Oxygen O2 (electrochemical) 0-30% vol           203         CO, 0-100 ppm           204         CO, 0-300 ppm           213         H2S, 0-30 ppm           214         H2S, 0-100 ppm           215         H2S, 0-1,000 ppm           216         NO, 0-100 ppm           217         NO, 0-300 ppm           218         NO, 0-100 ppm           219         NO2, 0-10 ppm           212         SO2, 0-10 ppm                                                                                                                                                                                                                                                                                                                                     | 052        | Propylene 0-100% LEL                    |  |  |  |
| O56         Toluene 0-100% LEL           057         Triethylamine 0-100% LEL           058         White spirit 0-100% LEL           059         Xylene 0-100% Volume           060         Methane 0-100% volume           061         Hydrogen 0-100% volume           062         Helium 0-100% volume           063         SF6 0-100% volume           063         CO, 0-100 ppm           204         CO, 0-300 ppm           205         CO, 0-1,000 ppm           213         H2S, 0-30 ppm           214         H2S, 0-100 ppm           215         H2S, 0-100 ppm           216         NO, 0-100 ppm           217         NO, 0-300 ppm           218         NO, 0-1,000 ppm           217         NO, 0-300 ppm           218         NO, 0-1,000 ppm           219         NO2, 0-10 ppm           210         NO2, 0-10 ppm           212         SO2, 0-10 ppm                                                                                                                                                                                                                                                                                                                                 | 054        | Styrene 0-100% LEL                      |  |  |  |
| 057         Triethylamine 0-100% LEL           058         White spirit 0-100% LEL           059         Xylene 0-100% volume           060         Methane 0-100% volume           061         Hydrogen 0-100% volume           062         Helium 0-100% volume           063         SF6 0-100% volume           200         Oxygen O2 (electrochemical) 0-30% vol           203         CO, 0-100 ppm           204         CO, 0-300 ppm           205         CO, 0-1,000 ppm           213         H2S, 0-30 ppm           214         H2S, 0-100 ppm           215         H2S, 0-1,000 ppm           216         NO, 0-100 ppm           217         NO, 0-300 ppm           218         NO, 0-1,000 ppm           219         NO2, 0-10 ppm           220         NO2, 0-10 ppm           220         NO2, 0-30 ppm                                                                                                                                                                                                                                                                                                                                                                                      | 055        | Super SP95 0-100% LEL                   |  |  |  |
| 058         White spirit 0-100% LEL           059         Xylene 0-100% LEL           060         Methane 0-100% volume           061         Hydrogen 0-100% volume           062         Helium 0-100% volume           063         SF6 0-100% volume           200         Oxygen O2 (electrochemical) 0-30% vol           203         CO, 0-100 ppm           204         CO, 0-300 ppm           205         CO, 0-1,000 ppm           213         H2S, 0-30 ppm           214         H2S, 0-100 ppm           215         H2S, 0-100 ppm           216         NO, 0-100 ppm           217         NO, 0-300 ppm           218         NO, 0-1,000 ppm           219         NO2, 0-10 ppm           220         NO2, 0-10 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 056        | Toluene 0-100% LEL                      |  |  |  |
| 059         Xylene 0-100% LEL           060         Methane 0-100% volume           061         Hydrogen 0-100% volume           062         Helium 0-100% volume           063         SF6 0-100% volume           200         Oxygen O2 (electrochemical) 0-30% vol           203         CO, 0-100 ppm           204         CO, 0-300 ppm           205         CO, 0-1,000 ppm           213         H2S, 0-30 ppm           214         H2S, 0-100 ppm           215         H2S, 0-100 ppm           216         NO, 0-100 ppm           217         NO, 0-300 ppm           218         NO, 0-1,000 ppm           219         NO2, 0-10 ppm           220         NO2, 0-10 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 057        | Triethylamine 0-100% LEL                |  |  |  |
| 060         Methane 0-100% volume           061         Hydrogen 0-100% volume           062         Helium 0-100% volume           063         SF6 0-100% volume           200         Oxygen O2 (electrochemical) 0-30% vol           203         CO, 0-100 ppm           204         CO, 0-300 ppm           205         CO, 0-1,000 ppm           213         H2S, 0-30 ppm           214         H2S, 0-100 ppm           215         H2S, 0-1,000 ppm           216         NO, 0-1,000 ppm           217         NO, 0-300 ppm           218         NO, 0-100 ppm           219         NO2, 0-10 ppm           220         NO2, 0-30 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 058        | White spirit 0-100% LEL                 |  |  |  |
| 060         Methane 0-100% volume           061         Hydrogen 0-100% volume           062         Helium 0-100% volume           063         SF6 0-100% volume           200         Oxygen O2 (electrochemical) 0-30% vol           203         CO, 0-100 ppm           204         CO, 0-300 ppm           205         CO, 0-1,000 ppm           213         H2S, 0-30 ppm           214         H2S, 0-100 ppm           215         H2S, 0-1,000 ppm           216         NO, 0-1,000 ppm           217         NO, 0-300 ppm           218         NO, 0-100 ppm           219         NO2, 0-10 ppm           220         NO2, 0-30 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 059        | Xylene 0-100% LEL                       |  |  |  |
| 062         Helium 0-100% volume           063         SF6 0-100% volume           200         Oxygen O2 (electrochemical) 0-30% vol           203         CO, 0-100 ppm           204         CO, 0-300 ppm           205         CO, 0-1,000 ppm           213         H2S, 0-30 ppm           214         H2S, 0-100 ppm           215         H2S, 0-100 ppm           216         NO, 0-100 ppm           217         NO, 0-300 ppm           218         NO, 0-1,000 ppm           219         NO2, 0-10 ppm           220         NO2, 0-30 ppm           221         SO2, 0-10 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 060        |                                         |  |  |  |
| 063         SF6 0-100% volume           200         Oxygen O2 (electrochemical) 0-30% vol           203         CO, 0-100 ppm           204         CO, 0-300 ppm           205         CO, 0-1,000 ppm           213         H2S, 0-30 ppm           214         H2S, 0-100 ppm           215         H2S, 0-100 ppm           216         NO, 0-100 ppm           217         NO, 0-300 ppm           218         NO, 0-1,000 ppm           219         NO2, 0-10 ppm           220         NO2, 0-30 ppm           221         SO2, 0-10 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 061        |                                         |  |  |  |
| 200         Oxygen O2 (electrochemical) 0-30% vol           203         CO, 0-100 ppm           204         CO, 0-300 ppm           205         CO, 0-1,000 ppm           213         H2S, 0-30 ppm           214         H2S, 0-100 ppm           215         H2S, 0-1,000 ppm           216         NO, 0-100 ppm           217         NO, 0-300 ppm           218         NO, 0-1,000 ppm           219         NO2, 0-10 ppm           220         NO2, 0-30 ppm           221         SO2, 0-10 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 062        |                                         |  |  |  |
| 203         CO, 0-100 ppm           204         CO, 0-300 ppm           205         CO, 0-1,000 ppm           213         H2S, 0-30 ppm           214         H2S, 0-100 ppm           215         H2S, 0-1,000 ppm           216         NO, 0-100 ppm           217         NO, 0-300 ppm           218         NO, 0-1,000 ppm           219         NO2, 0-10 ppm           220         NO2, 0-30 ppm           221         SO2, 0-10 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 063        | SF6 0-100% volume                       |  |  |  |
| 204         CO, 0-300 ppm           205         CO, 0-1,000 ppm           213         H2S, 0-30 ppm           214         H2S, 0-100 ppm           215         H2S, 0-1,000 ppm           216         NO, 0-100 ppm           217         NO, 0-300 ppm           218         NO, 0-1,000 ppm           219         NO2, 0-10 ppm           220         NO2, 0-30 ppm           221         SO2, 0-10 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200        |                                         |  |  |  |
| 205         CO, 0-1,000 ppm           213         H2S, 0-30 ppm           214         H2S, 0-100 ppm           215         H2S, 0-1,000 ppm           216         NO, 0-100 ppm           217         NO, 0-300 ppm           218         NO, 0-1,000 ppm           219         NO2, 0-10 ppm           220         NO2, 0-30 ppm           221         SO2, 0-10 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 203        | CO, 0-100 ppm                           |  |  |  |
| 213         H2S, 0-30 ppm           214         H2S, 0-100 ppm           215         H2S, 0-1,000 ppm           216         NO, 0-100 ppm           217         NO, 0-300 ppm           218         NO, 0-1,000 ppm           219         NO2, 0-10 ppm           220         NO2, 0-30 ppm           221         SO2, 0-10 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 204        |                                         |  |  |  |
| 214         H2S, 0-100 ppm           215         H2S, 0-1,000 ppm           216         NO, 0-100 ppm           217         NO, 0-300 ppm           218         NO, 0-1,000 ppm           219         NO2, 0-10 ppm           220         NO2, 0-30 ppm           221         SO2, 0-10 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 205        | CO, 0-1,000 ppm                         |  |  |  |
| 215         H2S, 0-1,000 ppm           216         NO, 0-100 ppm           217         NO, 0-300 ppm           218         NO, 0-1,000 ppm           219         NO2, 0-10 ppm           220         NO2, 0-30 ppm           221         SO2, 0-10 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 213        |                                         |  |  |  |
| 216         NO, 0-100 ppm           217         NO, 0-300 ppm           218         NO, 0-1,000 ppm           219         NO2, 0-10 ppm           220         NO2, 0-30 ppm           221         SO2, 0-10 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 214        | ••                                      |  |  |  |
| 217         NO, 0-300 ppm           218         NO, 0-1,000 ppm           219         NO2, 0-10 ppm           220         NO2, 0-30 ppm           221         SO2, 0-10 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 215        |                                         |  |  |  |
| 218         NO, 0-1,000 ppm           219         NO2, 0-10 ppm           220         NO2, 0-30 ppm           221         SO2, 0-10 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 216        | NO, 0-100 ppm                           |  |  |  |
| 219         NO2, 0-10 ppm           220         NO2, 0-30 ppm           221         SO2, 0-10 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 217        |                                         |  |  |  |
| 220         NO2, 0-30 ppm           221         SO2, 0-10 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 218        |                                         |  |  |  |
| 221 SO2, 0-10 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 219        | NO2, 0-10 ppm                           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 220        | NO2, 0-30 ppm                           |  |  |  |
| 222 SO2, 0-30 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 221        | SO2, 0-10 ppm                           |  |  |  |
| <b>CC_</b> , CCC PP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 222        | SO2, 0-30 ppm                           |  |  |  |

60

OLC(T)100

| Gas number | Gas                                       |  |  |  |
|------------|-------------------------------------------|--|--|--|
| 223        | SO2, 0-100 ppm                            |  |  |  |
| 224        | Cl2, 0-10 ppm                             |  |  |  |
| 225        | H2, 0-2,000 ppm                           |  |  |  |
| 227        | HCl, 0-30 ppm                             |  |  |  |
| 228        | HCI, 0-100 ppm                            |  |  |  |
| 229        | HCN, 0-10 ppm                             |  |  |  |
| 230        | HCN, 0-30 ppm                             |  |  |  |
| 231        | NH3, 0-100 ppm                            |  |  |  |
| 232        | NH3, 0-1,000 ppm                          |  |  |  |
| 233        | NH3, 0-5,000 ppm                          |  |  |  |
| 235        | CIO2, 0-3 ppm                             |  |  |  |
| 239        | CO2, 0-5% non linearized                  |  |  |  |
| 240        | CO2, 0-10 % volume                        |  |  |  |
| 242        | PH3, 0-1 ppm                              |  |  |  |
| 243        | AsH3, 0-1 ppm                             |  |  |  |
| 500        | R12, 0-1% volume                          |  |  |  |
| 501        | R22, 0-2,000 ppm                          |  |  |  |
| 502        | R134A, 0-2,000 ppm                        |  |  |  |
| 503        | R141, 0-2,000 ppm                         |  |  |  |
| 504        | R142B, 0-2,000 ppm                        |  |  |  |
| 505        | R11, 0-1% volume                          |  |  |  |
| 506        | R23, 0-1% volume                          |  |  |  |
| 507        | Dichloromethane, 0-500 ppm                |  |  |  |
| 508        | Chloromethane (Methylchloride), 0-500 ppm |  |  |  |
| 509        | R123, 0-2,000 ppm                         |  |  |  |
| 510        | FX56, 0-2,000 ppm                         |  |  |  |
| 511        | R143A, 0-2,000 ppm                        |  |  |  |
| 512        | R404A, 0-2,000 ppm                        |  |  |  |
| 513        | R507, 0-2,000 ppm                         |  |  |  |
| 514        | R410A, 0-1,000 ppm                        |  |  |  |
| 515        | R32, 0-1,000 ppm                          |  |  |  |
| 516        | R227, 0-1% volume                         |  |  |  |
| 517        | R407C, 0-1,000 ppm                        |  |  |  |
| 518        | R408A, 0-4,000 ppm                        |  |  |  |
| 656        | Ethanol, 0-500 ppm                        |  |  |  |
| 657        | Toluene, 0- 500 ppm                       |  |  |  |
| 658        | Isopropanol, 0-500 ppm                    |  |  |  |
| 659        | 2-Butanone (MEk), 0-500 ppm               |  |  |  |
| 660        | Xylene, 0-500 ppm                         |  |  |  |

To know you part number, please follow these instructions:

#### The reference is broken down as follows:

## OLCT100-XPIR-001-1

OLCT 100 XP IR Transmitter, 0-100% LEL CH4, ATEX, M20 cable entry

| Range:                                                              | Туре:            | Gas:                                                           | Approval and entry of cable range:                                                                                     |
|---------------------------------------------------------------------|------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| OLC100<br>OLCT100<br>OLCT100 HT5*<br>OLCT100 HT10*<br>OLCT100 HT15* | XP<br>IS<br>XPIR | Codified from 1 to 999,<br>includes gas and detection<br>range | 1 - ATEX and M20 cable entry<br>3 - ATEX and <sup>3</sup> / <sub>4</sub> NPT cable entry<br>CSA approvals are pending. |

\*Sensor movable up to 5, 10, or 15 meters using a high temperature cable

## Garantv

#### 1 Plus Points

To respond quickly and efficiently to your consultancy needs or order tracking throughout the world via our customer service department.

To respond as rapidly as possible to all questions of a technical nature.

#### 2 Ouality

To assure you of the best quality of our products and service in conformity with the international standards and directives in force.

3 Inspection and Reliability

To provide you with reliable equipment. The quality of our production is an essential condition for this reliability. This is guaranteed by virtue of very strict checks that are carried out when raw materials come in, both during the course of and at the end of manufacture (all equipment that is sent out is configured to your individual requirements).

#### 4 Commissioning

If required, to commission your equipment by our Ism-ATEX gualified specialists.

#### 5 Training

To provide detailed training programs.

#### 6 Project department

Our team will investigate all gas and flame detection projects via on-site investigations or from drawings. We can suggest pre-project studies, design, installation and maintenance of safety systems in ATEX or non-ATEX zones with full respect of all standards in force.

8

7 Maintenance contract

To suggest rolling maintenance contracts tailored to your needs in order to guarantee you maximum safety:

- One or more annual visits, including consumables
- Renewable by agreement
- Including adjustment of fixed or portable gas detectors, and inspection of control systems.

#### On-site repair

To rapidly send our Service Technicians to you. This is possible on account of our hubs in France and abroad.

#### 9 Factory repair

To deal with any problem that cannot be resolved on-site by dispatching the equipment back to the factory. Teams of technicians will work on repairing your equipment as quickly as possible, thereby reducing the time spent out of commission to a minimum. Cost efficient replacement solutions are available if equipment is deemed not repairable. For all After Sales Service in France, contact us by email at servicecenter@oldhamgas.com

Or by telephone at + 33 (0)3 21 60 80 80. For locations near you, please visit us at indsci.com and click on the Oldham Division.

#### OUR MISSION

Preserving human life on, above and below the earth Delivering highest guality, best customer service... every transaction, every time.



The Fixed Gas Detection People

EUROPEAN PLANT AND OFFICES Z.I. Est - rue Orfila B.P. 20417 - 62027 ARRAS Cedex FRANCE Tél.: 33 3 21 60 80 80 - Fax: 33 3 21 60 80 00 Web site : http://www.oldhamgas.com

AMERICAS Tel. : +1 412 788 4353 Fax: +1 412 788 8353 info@indsci.com

#### ASIA PACIFIC

Tel.: +65-6561-7377 Fax: +65-6561-7787 sales@isc-cn.com

EUROPE Tel. : +33 3 21 60 80 80 Fax: +33 3 21 60 80 00 info@oldhamgas.com